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Abstract

TreeFam is a database of phylogenetic trees of gene families. It aims to develop a curated
resource that presents the accurate evolutionary history of all animal gene families, as
well as reliable orthologs and paralog assignment. In developing TreeFam, four novel
algorithms were designed to improve the accuracy of tree building or to serve special
needs for development. The first is a constrained neighbour-joining that efficiently
adds new sequences to an existing tree while maintaining the original topology at the
same time. This method is used to expand a seed tree to a full tree without losing
any information added by manual curation. The second algorithm is a leaf reordering
that orders the leaves of a tree according to the weights of leaves. When it is drawn
as a picture, one tree can be displayed in different ways, depending on the order of
leaves. This algorithm helps to display trees in a consistent algorithm and facilitates
visual examination of trees, which is particularly helpful when comparing two trees.
Thirdly, duplication and loss inference is fit into a more general theoretical framework
and extended to allow for a multifurcated species tree. A fourth algorithm has also been
developed, which is a new algorithm for merging trees. The tree merge algorithm itself
is not a tree building algorithm, but it reconstructs an optimal tree from several trees
that are built from an identical sequence set with different tree building methods. The
resultant tree should combine the advantages of, and so outperform, all the candidates.
This is shown to occur successfully in a large-scale benchmark presented in the last
chapter. This benchmark is one of the few evaluations that are based on real data in the
phylogenetics literature. It also highlights the fact that each tree-building algorithm has
its own strength, although ML and parsimonious methods are slightly better in general.
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Chapter 1

Introduction

Phylogenetics is the science of studying the evolutionary relationships (phylogenies) of a
group of organisms (Baldauf, 2003) or genes. One of the fundamental hypotheses of phy-
logenetics is that all organisms on Earth had a common ancestor and can be represented
as trees. This hypothesis can be dated back to the era of Darwin and is supported by
various studies on the similarity of molecular mechanisms of organisms (Durbin et al.,
1998). Successfully reconstructing the tree of life has long been the dream, and also the
aim, of evolutionists.

Traditionally, phylogenetic trees are reconstructed by examining and comparing
morphological characters (both from living and fossilized organisms), which was and still
is a time-consuming and specialized endeavor (Cotton, 2003). Since the publication of
Zuckerkandl and Pauling’s original paper (Zuckerkandl and Pauling, 1965) that showed
molecular sequences could also serve as characters, molecular phylogenetics found its
own position and has become a distinct and fruitful direction of phylogenetics in recent
years with rapidly increasing sequence data. It not only produces an overwhelming
amount of information to biologists, but also inspires the development of computer
science and statistics.

1.1 Background

Whereas reconstructing the tree of life is one of the central topics of phylogenetics,
reconstructing the phylogeny of each gene family shows the strength of phylogenetic
methods to most of molecular biologists. Phylogenies of gene families not only present
the history of gene evolution, but also hold the key to gene annotations across species.
The functional annotations or experimental results of genes in one species can be trans-
ferred to another when the history of related gene families is clear. This integrates the
efforts of gene annotation in different species and is vital to annotations, especially to
the annotations of a newly sequenced species. Of the same importance, reconstructing
of gene phylogenies is the premise of discovering the priciples of gene evolution, which
further provides clues to interpret gene functions. For example, the difference of selec-
tive pressures on genes implies functional shifts between them. Meaningful mutations,
pseudogenes and interaction networks may also be inferred with the help of gene phy-
logenies (Ng and Henikoff, 2003; Coin and Durbin, 2004). In addition, reconstructing
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phylogenies of gene families paves the way for other related evolutionary studies, such
as intron evolution and genome-wide duplications.

Given the importance of gene phylogenies, many databases have been developed to
present the history of each gene family, including KOG (Tatusov et al., 2003), PAN-
THER (Mi et al., 2005), SYSTERS (Meinel et al., 2005) PhIGs (Dehal and Boore,
2005), Ensembl-compara (Hubbard et al., 2005), OrthoMCL (Li et al., 2003) and
HOGENOM (Dufayard et al., 2005). These efforts greatly boost the studies of gene
evolution, but they are all faced with a common problem: how can a reliable phylo-
genetic tree be reconstructed? And this problem is, unfortunately, always one of the
hardest topics in the area of bioinformatics (Delsuc et al., 2005). Sequences of poor
data quality (such as incorrect gene annotation or few informative sites) and unrealistic
underlying evolutionary model (such as assuming that different lineages have evolved
at the same rate) may greatly affect the accuracy of tree building. No automatic algo-
rithm can reconstruct an accurate tree all the time. To make a phylogenetic database
practically useful, this problem has to be solved.

1.2 Overview of the Thesis

TreeFam is a (gene) tree family database. Phylogenetic trees are the central elements.
In developing TreeFam, the tree building difficulties are solved in two directions. First,
a new algorithm, tree merge, is developed to improve the quality of automatic trees, and
second, mannual curation is applied to further get higher accuracy with the help of the
constrained neighbour-joining algorithm. This thesis presents the details to these algo-
rithms and also covers most of topics related to the construction of TreeFam, including
basic concepts, pipelines, additional algorithms, and implementations. In attempt to
keep this thesis as an academic one, technical issues are placed in the appendix even
though these issues might have been of the same importance as academic aspects when
TreeFam database was set up.

In the following section of this chapter, the biological backgrounds and mathematical
notations will be clarified. Chapter 2 describes the philosophy and structure of the
TreeFam database. Chapter 3 covers various small yet important topics on the tree-
building process, particularly two algorithms, constrained neighbour-joinining and leaf
reordering algorithm, which are inspired by the TreeFam project. Chapter 4 extends the
traditional tree-reconciliation procedure so as to allow for a multifurcated species tree
and presents discussion about tree mapping. Chapter 5 describes tree merge algorithms,
which is the chief effort in improving the quality of automatic trees. And in Chapter 6,

1 62 4 53

Figure 1.1: Relationships between chapters.
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various tree-building algorithms are evaluated, using the curated TreeFam trees as a
test set. The relationships between chapters are showed in Figure 1.1.

Except this introductory chapter, most of the results showed in this thesis have not
been published yet. Although Chapter 2 is based on our paper (Li et al., 2006), it
still differs much from the published works. Some important results in the thesis are
expected to be published in the following months.

1.3 Phylogenetic Terminology

Phylogeny denotes the evolutionary relationships of a group of organisms or genes. It
can be represented as a tree, called a phylogenetic tree. Phylogenetics is the field of
biology that studies phylogenies. It includes the reconstruction of phylogenies and the
study of the factors that affect phylogenies, and the biological meaning that phylogenies
reveal.

In this thesis, two types of trees will be involved: species trees and gene trees. Strictly
speaking, a species is “a group of organisms capable of interbreeding freely with each
other but not with members of other species” 1. A species tree (Figure 1.2) describes the
evolution relationships between species. Each of its external nodes (or terminal nodes,
or leaf nodes, or leaves) stands for a present species that can be observed nowadays,
while each internal node for an ancestral species in history. An ancestral species is
usually named after the taxon that represents its descendant species. For example,
when we say species Eutheria, we mean the ancestral species from which all species in
the taxon Eutheria are descendant. The science of naming and classifying organisms
is called taxonomy , a branch of phylogenetics. Taxonomists would prefer to term a
(present or ancestral) species as a taxon (pl. taxa)2

A gene is defined as: “A DNA segment that contributes to phenotype/function.
In the absence of demonstrated function a gene may be characterized by sequence,
transcription or homology” 3. Genes are related in the context of evolution. Homologs
are genes that are descendant from a single gene (Koonin, 2005). Orthologs are genes in
different species that originate from a single gene in the last common ancestor of these
species (Remm et al., 2001); furthermore, we say m genes in one species and n genes in
another form m : n orthologs if the m + n genes are all descendant from a single gene
in the LCA of the two species (Figure 1.2). By definition, orthologs must be homologs,
and they are closer homologs; homologs that are not orthologs are paralogs. Homologous
genes form a gene family which is defined a group of gene that are descendant of a single
ancestral gene. The evolutionary relationships between genes in a gene family can also
be represented as a tree, named gene tree. Similarly, each external node of a gene tree
stands for a present gene that can be observed nowadays, while each internal node for
an ancestral gene that only existed in history.

Species trees and gene trees are related: species trees can be inferred from gene trees,

1http://www.edu.gov.nf.ca/curriculum/teched/resources/glos-biodiversity.html
2According to taxonomy, all species are classified at six major levels. In an order from most genernal

to most specific, the six levels are kingdom, phylum, class, order, family, genus and species. For example,
human belongs to such groups: Animalia (kingdom), Chordata (phylum), Mammalia (class), Primates
(order), Hominidae (family), Homo (genus), and Homo sapiens (species).

3http://www.gene.ucl.ac.uk/nomenclature/guidelines.html

http://www.edu.gov.nf.ca/curriculum/teched/resources/glos-biodiversity.html
http://www.gene.ucl.ac.uk/nomenclature/guidelines.html
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and gene trees reflect patterns in species trees. At the same time, gene trees can differ
from species trees due to the existence of duplications, losses, and lateral gene transfer
(LGT), which can, in turn, be inferred by reconciling a gene tree and a species tree. One
of the exceptional features of TreeFam, and therefore of this thesis, is to untangle the
relations between species trees and gene trees. Many meaningful conclusions, such as
the functional evolution and differentiation of genes, can be made when these relations
are resolved. Such relations also help to reconstruct reliable gene trees.

Human

Chimpanzee

Mouse

Rat

Dog

Chicken

T.nigroviridis

Pufferfish

C.intestinalis

Homo/Pan/Gorilla

MurinaeEutheria

Amniota

Tetraodontidae

Euteleostomi

Chordata

Eutheria [loss]

CCNI_human

ENSPTRT00000030141_chimpanzee

ENSCAFT00000013762_dog

Ccni_mouse

ENSMUST00000058380_mouse

ENSMUST00000054409_mouse

XP_214007_rat

XP_420590_chicken

GSTENT00004608001_T.nigroviridis

SINFRUT00000165765_pufferfish

ENSGALT00000011124_chicken

GSTENT00033752001_T.nigroviridis

SINFRUT00000148117_pufferfish

ENSCINT00000007140_C.intestinalis

GENE1

GENE2

Homo/Pan/Gorilla

Eutheria

MOUSE

MOUSE

Murinae

Eutheria

Amniota

Tetraodontidae

Euteleostomi

Tetraodontidae

Euteleostomi

Euteleostomi

Chordata

Amniota

Figure 1.2: Example of a species tree and a gene tree. The top figure shows a species tree of
Chordata phylum. This tree will be used throughout this thesis. The bottom shows the gene
tree of Cyclin I sub- gene family. A slant name beside the internal node shows the ancestral
species that contained the correponding ancestral gene. In this gene tree, the human gene
CCNI human is 1:1 orthologous to XP 420590 chicken because they are descendant from a single
gene in Amniota, the LCA of human and chicken. But this human gene is only homologous
to, but not orthologous to, ENSGALT00000011124 chicken because although both genes are
descendant from a single gene in Euteleostomi, the human gene is a descendant of GENE1 in
Amniota while ENSGALT00000011124 chicken of GENE2. In addition, this gene tree also shows
several 1:n orthologs. For example, gene ENSCINT00000007140 C.intestinalis is an 1:2 ortholog
of SINFRUT00000165765 pufferfish and SINFRUT00000148117 pufferfish. The bottom figure will
be reexamined in Chapter 4 where more details will be presented.
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1.4 Terminology for Trees

1.4.1 Common terminology for trees

In graph theory, a tree is a connected graph that contains no cycle. It is comprised
of nodes (vertices) and branches (edges) which connect nodes. A node can be external
(terminal) if it is only attached to one branch, or internal if two or more branches are
joined by the node. An external node is also termed as a leaf .

Strictly speaking, every true phylogenetic tree is a rooted tree that presents the
direction of evolution. The root node is regarded as the earliest ancestor of all the
species or genes in the tree. In a rooted tree, each internal node has its children; except
the root, each node has one parent. The branches close to the root are called higher or
deeper branches, while close to the leaves called lower branches. Given a set of nodes,
the lowest ancestral node from which all the given nodes are descendant is called LCA
(Last Common Ancestor). A node and all the nodes descendant from it form a clade.

A true phylogenetic tree is also a binary tree in which each internal node has ex-
actly two children. A binary tree is also called a resolved tree in the sense that every
evolutionary event is presented in the tree. However, if two successive events happened
in a short time, they can be hardly discriminated when the tree is reconstructed. In
practice, nodes having three or more children are still allowed. These nodes are called
polytomies or unresolved nodes or multifurcated nodes. A tree containing polytomies is
an unresolved tree or multifurcated tree. The widely used NCBI taxonomy tree (Wheeler
et al., 2005) is a multifurcated tree.

1.4.2 Representation of trees

The most intuitive way to view a tree is to display it as an image. However, an image
can neither be directly described in mathematical language nor be easily parsed by a
computer program. Thus it is necessary to introduce abstract languages to shape a tree
and to describe related algorithms as well.

Three types of representations will be used in the thesis: graph representation, string
representation and set representation. The first two will be explained here and the third
one will appear in Chapter 5 where set representation, being more abstract, helps to
clarify the concepts and proof in a strict manner.

Graph representation: definitions and notations

Definitions and notations in this section will be used throughout the thesis, except in
Chapter 5 where new notations will be introduced to facilitate specific aims. Only rooted
trees will be discussed here as any phylogenetic tree is rooted given the assumption that
all organisms on Earth had a common ancestor. In Section 3.3, we will come to the
topic of how to find the root of an unrooted tree.

Let T be a rooted tree and V (T ) be the set of nodes in T . Let VE(T ) and VI(T )
be the set of external nodes (or leaves) and internal nodes, respectively. Given a node
v, its direct descendants form chi(v) ⊂ V (T ), v’s children set, and v is a child of
par(v) ∈ V (T ), the parent node of v.
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For u, v ∈ V (T ), we write u < v or v > u if u is a descendant of v. The set of
external nodes that are descendent from v is defined as:

ωT (v) = {u ∈ VE(T ) : u ≤ v}. (1.1)

Similarly, the set of external nodes of set A ⊂ V (T ) form the set:

ωT (A) =
⋃
u∈A

ωT (u). (1.2)

Sometimes, we might abbreviate ωT (v) as ω(v) if T can be understood from the context.
Next, we seek to construct a subtree of T . For a node set A, we denote by lca(A)

the last common ancestor (or LCA) of A, which is the lowest node ancestral to all the
nodes in A. Let T |A be the subtree comprising of only those paths in T that connect
ω(A). Thus, the node set of T |A is:

V (T |A) = {v ∈ V (T ) : ωT (v) ∩ ωT (A) 6= ∅} (1.3)

The root of T |A is lca(A). We also write T |{v} as T |v for simplicity. Figure 1.3 shows
an example related to these concepts.

�
�

�
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�
�

�
�
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@

@
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@
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@
@

@
@

�
�

1 2 3 4 5

6 7
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a a a a aa a

a

@
@

@
@

@
@

@
@

1 2 3 4 5

6 7

8

q q a q aq a

a

T T |A
Figure 1.3: Example tree used to illustrate basic concepts. In the original tree T , lca({4, 6}) =
8, and ω(8) = {1, 2, 3, 4, 5}. If A = {3, 5}, the restricted tree T |A is showed in the right
where VE(T |A) = {3, 5} and VI(T |A) = {7, 8}. Note that in T |A, node 7 only has one child.
Tree T can be represented as a string in New Hampshire format: ((1,2)6,3,(4,5)7)8, or
((5,4)7,(1,2)6,3)8 regardless of the order of leaves. They represent the same tree.

String representation: New Hampshire format

New Hampshire (NH) format, or Newick format, is the standard computer-readable
format to store a rooted phylogenetic tree. It makes use of the correspondence between
trees and nested parentheses, and represents a tree as a string, called an NH string.

NH format is clear and intuitive. Figure 1.3 shows how a tree can be represented as
a NH string. The formal grammar of NH format is described as follows:

<tree> → <cell>
<cell> → <nhcell> | <nhcell>[<comment>]
<nhcell> → <node> | <node>:<dist>
<node> → <id> | (<list>) | (<list>)<id>
<list> → <cell> | <list> , <cell>
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where <comment>, <id> and <dist> denote comment, identifier and distance, respec-
tively. These symbols can be matched by sheer regular expressions and not showed here.
Actually, the tree format used by TreeFam is New Hampshire eXtended (NHX) format,
which allows for storing additional information in <comment> with a specified key-value
structure. NHX format was first suggested by Zmasek et al (Zmasek and Eddy, 2001b).

It is important to note that one tree corresponds to many different NH strings,
depending on the order of leaves appearing in the strings. All these equivalent strings
reflect the same topology. In practice, we usually take as the preferred choice the string
in which leaves appear in an order identical to what is showed in the ‘image’, and so an
NH string has a natural 1:1 relation to the ‘image’ of a tree.

As discussed above, one tree can be displayed in different ‘image’ when plotted on
a plane, or be represented in different NH strings. Although all these images or strings
are equivalent to the same tree, they are quite different in human’s eyes. Given two
big trees with hundreds of leaves, it is formidable for a human to discern the difference
between them if the leaves do not appear in similar orders. To find universal rules to
plot a tree is quite necessary, and this is what we will seek to solve in Section 3.5.

1.4.3 Comparing two unrooted trees

Given a set V , a bipartition of V is a pair of disjoint sets A|B = B|A that satisfy: (i)
A ∩ B = ∅ and (ii) A ∪ B = V . Let tree T = (V (T ), E(T )) be an unrooted tree whose
node (vertex) set is V (T ) and branch (edge) set is E(T ). Each branch of T can divides
T into two disjoint parts. If we let the leaf sets of the two disjoint parts be A and B,
A|B is a bipartition of V (T ). In this way, each branch of T uniquely corresponds to a
bipartition of V (T ), and therefore we can construct a set:

T̃ = {A|B : there is a branch corresponding to V (T )’s bipartition A|B.} (1.4)

Obviously, |T̃ | = |E(T )|. As the maximum value of |E(T )| is 2 · |V (T )| − 3 when T is a
binary tree, the maximum value of |T̃ | is also 2 · |V (T )| − 3. In the rest of this section,
when we say ‘a branch A|B exists in T ’, we actually mean that A|B ∈ T̃ , or equivalently,
that there is edge corresponding to the bipartition A|B. Thus the topologies of unrooted
trees that have the same leaf set V can be compared.

Let T1 and T2 be two unrooted trees with V (T1) = V (T2). The Robinson-Fould
distance measures the topological difference between them, which is defined as:

dT (T1, T2) = |(T̃1 ∪ T̃2) \ (T̃1 ∩ T̃2)| (1.5)

This distance counts the number of branches that exist in one tree but not in the other.
Note that branches that connect leaves always exist in both T̃1 and T̃2, and therefore the
maximum value dT is 2 · (|V (T1)| − 3), which can be reached given two totally different
binary trees.



Chapter 2

Constructing the TreeFam

Genes are related in the context of evolution. To transfer functional annotations across
different species and to study the principle of gene evolution, it is important to untangle
the relationships between the genes in a gene family. The best way to achieve this
is to reconstruct a phylogenetic tree, which not only presents most of evolutionary
details, but also provides the basis for further studies such as ortholog inference and
gene annotation. TreeFam (Li et al., 2006) (Tree families database) is a database of
phylogenetic trees of gene families. It aims to develop a curated resource that presents
the accurate evolutionary history of all metazoan animal gene families, as well as various
inference based on phylogenetic trees.

In this chapter, we will introduce TreeFam database, its contents, structures, and
pipelines that are used to construct TreeFam. As detailed procedures used by TreeFam-
1.x have already been described in our paper, we will put more emphasis on the difference
between release 1.x and 2.0 when presenting the whole pipelines.

2.1 Overview of TreeFam

2.1.1 What is TreeFam?

TreeFam is first a protein classification database. It aims to classify genes into families,
and assign a name to each family and significant subfamily. Distinguished from most of
other similar databases like KOG (Tatusov et al., 2003), PANTHER (Mi et al., 2005)
and SYSTERS (Meinel et al., 2005), which defines families according to the degree of
similarities between family members, TreeFam aims to define a gene family as a group
of genes that descended from a single gene in the last common ancestor of all metazoan
animal, or that first appeared in metazoan animals. Evolutionary rates, reflected by
similarity scores, may vary greatly in different groups of genes. Families defined by
similarity based methods will be inevitably sensitive to the threshold that is used at
clustering stage, and also lack biological meaning. In contrast, TreeFam will not suffer
from this problem. As is pointed by PhIGs (Dehal and Boore, 2005), which is one of the
basis of TreeFam, families defined in the phylogenetic way are not sensitive to similarity
threshold, and therefore more robust and meaningful from the evolutionary angle.

Secondly, TreeFam is an ortholog database. It infers orthologs and paralogs from
the phylogenetic tree of a gene family. Traditionally, orthologs are inferred from pair-
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wise alignment between two species with a little help of synteny for close related species.
Most of ortholog database at present are based on this method, including NCBI Homolo-
Gene (Wheeler et al., 2005), Ensembl-compara (Hubbard et al., 2005), OrthoMCL (Li
et al., 2003), and Inparanoid (O’Brien et al., 2005). Although these databases pro-
vide useful information about ortholog assignment, they might fall short when gene loss
interferes. In the absence of genes from third-part species, pairwise method might over-
look the existence of duplications and therefore overestimate orthologs. Furthermore,
their inference between different pairs of species might be inconsistent. For example,
assume gene g1 is a 1:1 ortholog of g2, and g2 is a 1:1 ortholog of g3. Then g1 should
also be one-to-one orthologous to g3 in theory. But in pairwise framework, it is possible
that g1 is not an ortholog of g3. This is because the three pairs, (g1, g2), (g2, g3) and
(g3, g1), are processed separately. It is not required that they should be consistent. In
contrast, Tree-based method, considering genes from multiple species as a whole, will
not suffer from these problems. It is also more intuitive and informative in comparison
with pairwise method. To the best of our knowledge, only HOGENOM (Dufayard et al.,
2005) has inferred orthologs from phylogenetic trees.

Finally, TreeFam is a curated database. Evolution diverges in different gene families
and also in different lineages. To automatically reconstruct reliable phylogenetic trees
is always one of the most challenging topics in the area of bioinformatics. This is why
biologists have to reduce to pairwise methods even when they know the advantage of
tree-based methods. Although in TreeFam we have developed new algorithms to improve
the accuracy, automatic process is not comparable to human curation. Only human
being can successfully integrate information from various resources; only human being
can endow a tree with biological meaning. TreeFam is unique because it incorporates
human curation.

2.1.2 Basic Structures of TreeFam

The basic structure of TreeFam resembles that of Pfam (Bateman et al., 2004), a curated
resource for protein domains. Like Pfam, TreeFam is also a biparted database: part A
that consists of curated tree families, and part B that consists of automatically generated
families. Each part also comprises of two types of sequences: seed that come from either
manual curation (for TreeFam-A) or PhIGs clusters (for TreeFam-B), and full sequences
that are expanded from seeds. Figure 2.1(A) presents the overall relations between these
concepts. Detailed pipelines will be explained in following sections.

2.2 Input Data

2.2.1 Sequence data

TreeFam 2.0 collected protein and coding sequences for 19 fully sequenced species from
GenBank (Wheeler et al., 2005), SGD (Balakrishnan et al., 2005), WormBase (Chen
et al., 2005), GeneDB (Hertz-Fowler et al., 2004) and Ensembl (Hubbard et al., 2005)
(Table 2.1). Protein sequences for species that have not been sequenced were obtained
from UniProt (Bairoch et al., 2005). Genomic locations and Pfam (Bateman et al., 2004)
domain structures of genes were also included if available. In this chapter, TreeFam
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sequence set will be called TFSEQ for simplicity.
Of the 19 species, two yeasts and A.thaliana serve as outgroup species. In a gene

tree, genes of outgroup speices help to reveal ancestral species earlier than the LCA of
metazoan animals, and thus indicate when two groups of animal genes should belong
to two TreeFam gene families instead of one. Outgroups set the boundaries of gene
families.

2.2.2 Original seeds

The start point of the entire TreeFam pipelines is the construction of seeds of TreeFam-B
families, which has to be achieved by clustering methods. Fortunately, PhIGs has al-
ready done this in the way we desired. In PhIGs, clusters are inferred to have descended
from a single gene from the last common ancestor of a specified group of species. Genes
are grouped together following the evolutionary relations between species, instead of
sheer similarity scores. At present, two types of clusters are presented in PhIGs web-
site: one for all vertebrates, and the other for all metazoan animals. Ideally, a gene
cluster of the latter type is exactly equivalent to a gene family defined in TreeFam,
and therefore TreeFam skips the clustering step and directly uses PhIGs clusters as the
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Figure 2.1: Flowchart of TreeFam pipeline. (A) Overall strategy. The seed families for TreeFam-
B are taken from PhIGs clusters. They are expanded by a seed-to-full procedure to form full
families. Manual curation makes TreeFam-B families become TreeFam-A families, which can
also be curated further at a later date. (B) The seed-to-full procedure. Dashed lines and gray
texts show the actions only present in TreeFam-1.x. In the boxes with gray background, details
have been changed since TreeFam-2. Seed-to-full procedure is used to expand seed sequences
to full sequences. Note that the complete procedure is only applied when the sequences sets
are updated or a whole new genome is added to TreeFam. For TreeFam-A families created by
curation of a TreeFam-B families, the TreeFam-A seed is generated by manual curation, and the
full sequences are taken directly from the TreeFam-B that was curated. (C) Manual curation.
Various published resources and in-house tools are utilized in this process.
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original seed sets.

2.2.3 Miscellaneous data

A phylogenetic tree not only presents the history of a gene family. It also provides the
basis for various evolutionary researches, such as studies related to intron evolution,
domain evolution, and shift of gene functions. To help these studies and to discover
the principles behind evolutionary phenomena, we also integrate several other resources
with TreeFam. Since TreeFam-2.0, splicing information and domain structures of each
gene have been available. Expressional profiles of genes will be provided in TreeFam-3.
Phenotypes from a knockout screen and GO ontology (Ashburner et al., 2000) categories
may also be considered in future.

2.3 Automatic Pipelines

Pipelines used for constructing TreeFam 2.0 mainly differ from those for 1.x in two
aspects: grouping of PhIGs clusters and use of the competitive method. As TreeFam
paper has already presented detailed procedures used in 1.x series, we only focus on the
2.0 pipelines in this section.

Tax ID Tax Name abbr. Common Name
9606 Homo sapiens HUMAN Human
9598 Pan troglodytes PANTR Chimpanzee
10090 Mus musculus MOUSE Mouse
10116 Rattus norvegicus RAT Rat
9615 Canis familiaris CANFA Dog
9031 Gallus gallus CHICK Chicken
8364 Xenopus tropicalis XENTR Western clawed frog
31033 Fugu rubripes FUGRU Japanese pufferfish
99883 Tetraodon nigroviridis TETNG Green puffer
7955 Danio rerio BRARE Zebrafish
7719 Ciona intestinalis CIOIN
7227 Drosophila melanogaster DROME Fruit fly
7165 Anopheles gambiae ANOGA African malaria mosquito
7460 Apis mellifera APIME Honeybee
6239 Caenorhabditis elegans CAEEL
6238 Caenorhabditis briggsae CAEBR
4896 Schizosaccharomyces pombe SCHPO Fission yeast
4932 Saccharomyces cerevisiae YEAST Baker’s yeast
3702 Arabidopsis thaliana ARATH Mouse-ear cress

Table 2.1: Fully sequenced species that are included in TreeFam-2. Two yeasts and A.thaliana
serve as outgroup species that are used to indicate the boundary of a gene family.
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2.3.1 Generating seeds of TreeFam-B families

In TreeFam release 1.x series, PhIGs clusters that consisted of three or more vertebrate
sequences were directly used as the seeds of TreeFam-B families. However, as PhIGs
seemed to apply a very stringent threshold at clustering stage, it sometimes split a gene
family into several smaller clusters if family members were too divergent. This has been
observed at times in curation processes, and made us consider clustering PhIGs results
when TreeFam 2.0 was planned.

Since TreeFam 2.0, PhIGs clusters are grouped as follows. First, sequences of original
clusters are aligned against TFSEQ by BLAST1 (Altschul et al., 1997) with E-value
cutoff 0.01. Matched TFSEQs are searched again by HMMER2 (Eddy, 1998) with E-
value cutoff 0.1. HMM profiles in this step are built from MUSCLE3 (Edgar, 2004)
multialignments of original PhIGs clusters. A relational graph is then constructed from
HMMER results. In this graph, each vertex is an original PhIGs cluster. A weighted
edge is added if the HMMER results of two clusters share some animal genes. More
precisely, given a PhIGs cluster u, let Ru be the set of TFSEQ animal genes whose
HMMER bit-score are higher than scores of any outgroup genes matched by sequences
in u. An edge is added between two clusters u and v if Ru ∩Rv 6= ∅. The weight of this
edge is |Ru∩Rv |

min{|Ru|,|Rv |} . After the construction of this weighted graph, clustering can be
achieved by various means based on graph theory. In TreeFam 2.0, we implemented a
heuristic algorithm revised from Zdobnov et al. (Zdobnov et al., 2002). Like most similar
methods, this algorithm tries to find groups in which edges tend to be saturated 4.
Finally, grouped PhIGs clusters are merged to form a larger one, which is regarded
as a new cluster in next round. In theory, this grouping process should be iterated
for many times until the results are stable, but in practice we found that grouping
two or more times will lead to many superfamilies that contain several animal families,
seemingly due to the reason that HMMER becomes insensitive when clusters get larger.
Consequently, only one round of grouping is applied. The results are then used as the
seeds of TreeFam-B families.

2.3.2 Competitively assigning each sequence to one family

In TreeFam 1.x, family members were determined by tree cutting algorithm. This
algorithm discarded homologs that are descendants of a different (paralogous) gene in
the last common ancestor of animals. Ideally, such a behaviour is exactly what we

1BLAST (Basic Local Alignment Search Tool) is the most popular alignment program that finds
the homologs of one sequence. It aligns one sequence against each sequence in a sequence set and
measures the similarity by an alignment score. Then BLAST evaluates the significance of homology by
E-value which is the mathematical expectation of the number of sequences having scores higher than
the observed score when a random sequence is aligned against a random sequence set of the same size.

2HMMER is also a tool for homolog search. It builds an HMM (hidden Markov model) profile based
on a multialignment. It then makes use of the profile to measure how well a sequence matches the
given multialignment. Utilizing a set of sequences, HMMER is more sensitive and more accurate than
BLAST which only performs pairwise alignment. However, HMMER is much slower than BLAST.

3MUSCLE is a multialignment program like Clustalw. It puts all sequences together and aligns them
such that their homologous regions match with each other. Generally, MUSCLE is much faster and
more accurate than Clustalw (Edgar, 2004).

4As a matter of fact, MCL algorithm (Enright et al., 2002) is more sophisticated in this case.
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desired. However, due to the tendency of missing distant homologs and the difficulties
in reconstructing long branches, tree cutting malfunctioned at times and resulted in
families that consisted of excessive members. Thus in TreeFam 1.x, one gene could
belong to several or even dozens of families, which by itself was inconsistent and also
caused much trouble in curation. In addition, as multialignments and phylogenetic trees
had to be built before unnecessary sequences were discarded, huge multialignments that
contained over 500 genes were encountered from time to time, which greatly aggregated
computational burden. Consequently, we decided to develop a better strategy to assign
sequences to TreeFam families.

In TreeFam-2.0, homologous sequences are still collected by a combination of BLAST
and HMMER: homologs are first found by BLAST and then refined by HMMER with
the profile built from seed multialignment by MUSCLE. After this step, one sequence
is competitively assigned to one family which gives the sequence the highest HMMER
score; if one family contains several splicing forms of one gene, only the transcript with
the highest HMMER score is retained. Family members are determined at this time.

To our observations, HMMER usually works quite well if the quality of seeds is high
enough. Most of animal genes, especially vertebrate genes, can be correctly assigned
in this way. However, when seed contains few sequences or the seed alignment is too
poor, HMMER score will be inaccurate and cause errors. Furthermore, the existence of
orphan genes and the incompleteness of the whole seed set also interfere. Even if a gene
does not belong to any existing TreeFam families, it will still be forcedly assigned no
matter how low the BLAST and HMMER scores are. In the next release of TreeFam,
this problem will be paid more attention.

2.3.3 Tracing sequence identifiers for TreeFam-A families

TreeFam stores curated knowledges in TreeFam-A seed trees. However, with the update
of sequence sets, genes in previous seed trees might be absent in the latest sequence sets
when the identifiers have been changed. In this case, some curation cannot be reserved,
and loss of of information occurs. And continuous loss of information will finally wipe
out all the effort in curation. To slow down this process is very important to a curated
database like TreeFam.

In TreeFam-2.0, a particular pipeline is designed to trace sequence identifiers when
they are changed between releases. The basic idea is to map a new identifier to an
old one if 5: (i) the two sequences come from the same species; (ii) the two are almost
identical in matched regions; and (iii) no other sequence is closer to either of the two
sequences. The condition (i) and (ii) are obvious and can be easily judged. The third
condition can be tested by studying the tree that consists of both unchanged sequences
and sequences whose identifiers are only present in one release, either old or new. In
this tree, condition (iii) is satisfied if a new identifier and an old one share the same
parent node. Figure 2.2 shows an example where violation of condition (ii) and (iii)
occurs.

5These rules will be changed since TreeFam-3.0.
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2.3.4 Building trees

With irrelevant distant homologs discarded in TreeFam-2 families, family trees are much
smaller than those in TreeFam-1.x, which makes it possible to reconstruct trees with
more accurate, yet slower, algorithms such as maximum-likelihood methods. In ad-
dition, tree merge algorithm (Chapter 5) is also applied more frequently, and further
improves the quality of phylogenetic trees.

In the new TreeFam-B, a full tree is reconstructed, at protein level, by neighbour-
joining constrained (Section 3.2) by dm tree, the synonymous-nonsynonymous merged
tree. In TreeFam-A, full trees are further required to be constrained by seed trees. While
tree reconstruction at protein level gets more sequences involved, the use of synonymous
tree improves the topologies at lower branches. In the effort to build even better au-
tomatic trees, we also build a ‘clean tree’ that is merged from four trees including ML
protein tree, ML nucleotide tree, NJ synonymous tree and NJ nonsynonymous tree
(Chapter 5). This method really outperforms all the others both in our benchmark and
to our experience in manual curation processes (Chapter ??).

*CCNI-wrong_PANTR

CCNI_HUMAN

CCNI-old_PANTR

ENSCAFT00000013762_CANFA

*Ccni-new_MOUSE
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SINFRUT00000165765_FUGRU

Figure 2.2: Example explaining trace-ID procedure. This tree consists of both unchanged
sequences (in gray) and sequences whose identifiers differ between releases (in black). Sequences
only present in the new release are highlighted in slanting font. Identifier CCNI-old PANTR shall
not be mapped to *CCNI-wrong PANTR because CCNI HUMAN is closer to the former one (violating
(iii)). ID CCNI-old CHICK cannot be mapped to *CCNI-wrong CHICK because they are not close
enough (violating (ii)) although they share the same parent node. Only the two mouse genes
can be mapped.



Chapter 3

Reconstructing Gene Trees

Phylogenetic trees represent the history of evolution instead of measuring the similarity
between sequences. Since the history can never be changed, correct trees are always
there. Good algorithms must correctly recover the history. On the other hand, as no one
knows what exactly happened in history, phylogenetic trees have to be reconstructed
based on present observations. While fossils are essential evidence to reconstruct species
trees, reconstructing gene trees can only utilize sequence similarity because fossils are
usually insufficient and unable to date molecular events. Consequently, how to pre-
cisely recover the true history from sequence similarity becomes the eternal topic in
evolutionary studies.

This chapter is to describe how TreeFam reconstructs a gene tree provided a
multialignment. After an overview of various tree-building algorithms, constrained
neighbour-joining, one of the exceptional algorithms developed in TreeFam, will be
presented. Rooting a tree will be discussed in the next. Bootstrapping test and leaves
reordering algorithm are also introduced here because the two topics are closely related
to tree building process. In TreeFam-1.x, neighbour-joining is the only algorithm we
used to build trees, but since the release of TreeFam 2.0, more sophisticated algorithms,
including maximum-likelihood method and tree merge, are applied. These methods are
not covered in this chapter, but are discussed in Chapter 5 and evaluated in Chapter 6.

3.1 Overview of Tree Building Algorithms

Whereas phylogenetic trees can be reconstructed with various evolutionary characters,
molecular phylogenetics mainly focuses on tree reconstruction from multiple-sequence
alignments. Throughout this thesis, multialignment is the starting point of tree recon-
struction. Most of algorithms discussed in this thesis will take a multialignment as the
unique input. Only in Chapter 5, auxiliary information will be integrated with tree
building process.

Tree building algorithms can be classified into four types: distance based, parsimo-
nious, maximum-likelihood, and Bayesian methods. Each type of algorithm has its own
strength and weakness. In meticulous case studies, all kinds of algorithms should be
tried in attempt to reconstruct a reliable phylogenetic tree. This has been confirmed by
the benchmark done in Chapter 5.
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3.1.1 Distance based algorithms

Distance based method is actually the name of a group of algorithms that reconstruct
a tree from a distance matrix (dij) where an element dij measures a kind of distance
between sequence pair i and j. Distances are usually, though not necessarily, calcu-
lated from a multialignment. They can be alignment scores, number of mismatches
(also called p-distance), or historical substitution frequencies estimated from statistical
models.

Of all distance based algorithms, UPGMA (Sokal and Michener, 1958) is the earliest.
It mimics hierarchical clustering processes, joining the pair of closest nodes. UPGMA
assumes the divergence of sequences occurs at a constant rate at all branches (molecular
clock), which, unfortunately, does not always stand. Lateral algorithms do not arbitrar-
ily require this hypothesis any longer, though the existence of a molecular clock help to
improve the accuracy of tree building. In 1967, Cavalli-Sforza and Edwards (Cavalli-
Sforza and Edwards, 1967) suggested that tree can be built such that the length of the
path between any leaf pair in the tree should approach the distance given by the dis-
tance matrix. This gave the rise of LS (least square) method. The reconstruction of a
LS tree require to search the whole tree space for the optimal tree, which is formidable.
Thus, Fitch and Margoliash (Fitch and Margoliash, 1967) further simplified this pro-
cedure and presented a algorithm that was practically useful. The breakthrough came
in 1987 when Saitou and Nei (Saitou and Nei, 1987) invented NJ (neighbour-joining)
algorithm. Instead of joining a pair of closest nodes at each step like UPGMA, NJ
joins a neighbour and does not assume the existence of a molecular clock. It is simple,
accurate and efficient. Two alternatives, BIONJ (Gascuel, 1997) and Weighbor (Bruno
et al., 2000), were also developed by improving the joining procedures. As a matter of
fact, neighbour-joining is a greedy approximation of ME (minimum evolution1) (Rzhet-
sky and Nei, 1993). It follows ME rule at each separated step, but does not build a
true ME tree. Recently, Desper and Gascuel (Desper and Gascuel, 2004) developed
BME framework (balanced minimum evolution) where ME tree can be precisely recon-
structed. Their program FASTME was claimed to be both faster and more accurate
than NJ and all its offshoots, which is partly confirmed in Chapter 6.

Distance based method is popular mainly for its unparalleled speed. It is the only
hope for reconstructing a phylogeny containing as many as 1000 sequences. However,
distance method is always criticized for its loss of information: substitutions on each
site between two sequences are compacted into a single number. This compression not
only affects the accuracy, but also limits the further application. For example, it is not
allowed to reconstruct ancestral sequences, or to estimate evolutionary parameters such
as transition/transversion ratio and Γ rate in the distance based framework. In those
cases, we must fall back to other methods.

1Minimum evolution (ME) principle regards that nature favours the tree with minimum sum of the
lengths of the branches. In some way, it resembles maximum parsimony principle introduced in next
subsection. Rzhetsky and Nei (Rzhetsky and Nei, 1993) prooved that ME tree is correct ‘provided that
the evolutionary distances used are statistically unbiased and that the branch lengths are estimated by
the ordinary least-squares method’.
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3.1.2 Maximum parsimony

Given a phylogenetic tree and a multialignment, we can trace back the history presented
by the tree and calculate the minimum number of substitutions that are required to
explain the given data. Different trees usually yield different numbers. MP (Maximum
parsimony) algorithm (Fitch, 1971) works by searching the whole tree space for the tree
that minimizes the minimum number of substitutions.

Based on the principle of Ockham’s razor 2, MP algorithm is most appealing for its
simplest assumption: a true tree tends to contain fewer substitutions. No evolutionary
model is in need to build a parsimonious tree. While this advantage attracts many
biologists, statistists see it in a different way. They criticized that MP is unable to
reconstruct a correct tree when long branches appear (Felsenstein, 1978). They argued
that MP is actually based on an irrealistic model where substitutions occur uniformly
both across sites and across subtrees (Holder and Lewis, 2003). They claimed that MP
yields less information in comparison to max-likelihood methods. However, although
being faced with these long-lasting disputes, MP remains popular and shows its power
especially for close homologs.

3.1.3 Maximum-likelihood and Bayesian methods

ML (maximum-likelihood) method (Felsenstein, 1981) finds the tree that maximizes
the likelihood given a specified evolutionary model. Regardless of efficiency issues, the
procedure of ML reconstruction is very simple: calculating the likelihood and finding the
best tree. While ML method presents the theoretical framework, its power is actually
determined by statistical models, which also makes ML method very versatile due to
the flexibility of models. Various evolutionary information can be smoothly inferred in
the statistical framework. ML method is definitely the most fruitful method of all the
tree building algorithms. Furthermore, ML method was also claimed to be the most
accurate tree building algorithms in several studies (Kuhner and Felsenstein, 1994; Hall,
2005). Most of molecular evolutionists will agree that the use of ML method reformed
the system of phylogenetics.

However, applying ML method is extremely computation extensive. Even when a
number of heuristic algorithms were designed to accelerate tree searching (Olsen et al.,
1994; Guindon and Gascuel, 2003; Stamatakis et al., 2005), building a tree with hun-
dreds of leaves is still formidable, not to speak bootstrapping the alignment (Section ??).
In addition, although ML method allows for various evolutionary models in use, these
models have to be preset in softwares and cannot be combined at will. This affects its
further use in complex phylogenies.

Bayesian method can be regarded as an alternative to ML method. But instead of
actively traversing the whole tree space to find the one with maximum likelihood like
ML, it finds the one that maximizes posterior probability by sampling phylogenetic trees
through MCMC (Markov Chain Monte Carlo) based on the specified model (Rannala
and Yang, 1996). The most exciting advantage of Bayesian method is its unparalleled
flexibility. As it just generates trees instead of calculating the probability of a given

2Given two equally predictive theories, choose the simpler, and the simplest answer is usually the
correct answer. See also http://en.wikipedia.org/wiki/Occam’s Razor.

http://en.wikipedia.org/wiki/Occam's_Razor
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tree, complex analytical computations can be avoided. Thus, various complex models
can be easily designed and combined together, and by summarizing from a bulk of
sampled trees, parameter estimation also becomes painless. Furthermore, sampled trees
in MCMC process can be considered as resampled trees to some extend (Larget and
L, 1999). Support values are naturally calculated with less computational resources,
though these values may be ‘excessively high’ as pointed out by several works (Suzuki
et al., 2002; Cummings et al., 2003; Simmons et al., 2004).

3.2 Constrained Neighbour-Joining

All traditional tree-building algorithms are unsupervised in that they never make use
of additional knowledge provided by a human. Even if we know a leaf set A should
be separated from B, they can be still mixed up in the resultant tree. In TreeFam,
however, we must preserve the topology of the seed tree, or the knowledge of curators,
when building a full tree. This is a supervised procedure. New algorithm must be
designed for this goal; otherwise the effort of curation would come to naught when the
full tree does not utilize the curated topology. In this section we introduce the first
key algorithm of TreeFam, constrained neighbour-joining (cNJ), which can add new
sequences to an existing tree without changing the given topology. We start with the
standard neighbour-joining.

3.2.1 Standard neighbour-joining algorithm

A distance matrix is said to be additive if there exists a binary tree from which the length
of the path 3 connecting each pair of leaves equals to the their pairwise distance presented
by the matrix. In turn, if a distance matrix is additive, we can always reconstruct the
tree that makes the additivity. Neighbour-joining (Saitou and Nei, 1987) is the algorithm
that finds this tree.

Neighbour-joining works by adding a new internal node that joins a pair of neigh-
bouring leaves at each step. Given a symmetric distance matrix (dij)n×n, a neighbour
pair is the pair of leaves that minimizes Dij of all possible (i, j), where Dij is defined
as:

Dij = dij − (ri + rj)

ri =
1

n− 2

n∑
k=1

dik

When a new node K is added to join a neighbour (I, J), the distances between them
can be calculated as:

dIK =
1
2

(dIJ + rI − rJ)

dJK = dIJ − dIK

And the distances between K and all the other nodes are:

dKm = 1
2(dIm + dJm − dIJ), for m = 1, 2, . . . , n, m 6= I and m 6= J

3In a tree, the path length equals to the sum of lengths of the edges/branches in the path.
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With neighbour I and J removed and K added, the original n × n distance matrix
(dij) will be reduced to (n − 1) × (n − 1). This finishes one round of iteration. When
this process is applied repeatedly until the matrix becomes 3× 34, the three remaining
nodes should be joined together. Tracing the joins at each step we can make a binary
unrooted tree, which is the standard neighbour-joining tree. If the distance matrix is
additive, this tree suffices additivity. Proof can be found in the book written by Durbin
et al. (Durbin et al., 1998).

Neighbour-joining algorithm joins the pair that minimizes Dij instead of dij . This
is one of the main points where neighbour-joining differs from UPGMA algorithm.
Minimizing Dij can avoid false-joining when long branches occur, and the existance of
long branches will always break the molecular clock, which will fail UPGMA. This is
the strongth of neighbour-joining.

3.2.2 Constrained neighbour-joining algorithm

The basic idea of neighbour-joining algorithm is very simple. The only difference
between the standard neighbour-joining and the constrained one is that constrained
neighbour-joining disallows joining that are conflict with the topology of the given con-
straining tree. As in each step all pairs of leaves will be checked, check of valid joining
must be fairly efficient. As a matter of fact, if we notice the fact that joining is only
allowed between two leaves with the same parent node, we can contract the constrain-
ing tree by removing joined leaves and making the parent a new external node. Such
contract is performed each time when two leaves in the constraining tree are joined
together. As checking whether two leaves sharing a same parent can be done in O(1),
validating allowed joining can also be achieved in O(1) time, and consequently, con-
strained neighbour-joining has the same time complexity with that of the original one,
that is, O(N3) where N is the number of leaves. Figure 3.1 also gives an example.
Detailed algorithm is described in Table 3.1. This table also presents the standard
neighbour-joining algorithm.

3.2.3 Further discussion

As a matter of fact, constrained neighbour-joining presented above does not follow the
neighbour-joining rule. It cannot ensure that an allowed pair of neighbours can always
be joined. This is because constrained NJ assumes the constraint is a rooted tree. It will
not consider other rooted topologies and arbitrarily join the nodes in the suffix order5

of the given constraining tree. To explain this, let’s see an example. Assume we have a
tree ((1,2),3,4) reconstructed by standard NJ. From the given tree, the only joining
happens between leaf 1 and its neighbour 2. Now, we continue to assume that the rooted
topology of this tree should be (((3,4),2),1) and use this rooted tree as constraint.
Then (3,4) must be joined first by constrained NJ described above, although the true
neighbour (1,2) does not violate the constraint in the unrooted topology. Constrained
NJ shuffles the order of joining and breaks NJ rule.

4This is because in an unrooted binary tree each internal node has three edges attached.
5If the nodes of a rooted tree are traversed in suffix order, lower nodes will always be visited earlier

than higher nodes.



26 Constructing TreeFam Database

If the distance matrix was strictly additive, or equivalently, if the distance between
any pairs of the leaves always equaled to the length of the path that connects the
pair, the order of joining would be unimportant. Joining in any order will lead to the
same tree, including the branch length. In the real world, however, strict additivity is
rarely held. Even if a standard NJ is used as constraint, constrained NJ will frequently
generate a tree with different branch length, though the topology is the same.

Given this fact, we also developed another version of constrained neighbour-joining
that regards the constraint as an unrooted tree. On the example above, the new version
will correctly join the neighbour (1,2) in the first step. This is also an O(N3) algorithm,

Constraining tree Joining procedure

Step 1:

1 2 3 4 5 1 2 3 4 5

[12]

Step 2:

[12] 3 4 5 [12] 3 4 5

[45]

Step 3:

[12] 3 [45] [12] 3 [45]

Final tree:

1 2 3 4 5

[12] [45]

Figure 3.1: Example of constrained neighbour-joining algorithm. In the first three rows, the
left is the constraining tree at current step; the right shows the remaining nodes and the best
allowed joining. At step 3, only three nodes remains. They are joined together, which makes a
trifurcation. The resultant tree is showed in the end. Note that no constraint is applied to node
‘3’. It can be freely joined to other if node ‘3’ neighbours a certain node at some step.
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but it can only be applied when the constraint is a binary tree; otherwise the time
complexity will be increased. This algorithm is much more complex than the previous
one and will not be described in this thesis.

Input:
Distance matrix (dij)
A rooted constraining tree C with all its leaves appearing in the matrix

Output:
A neighbour-joining tree T = (V (T ), E(T ))

Procedure:
Let L be the set of nodes that appear in the distance matrix
LC ← VE(C)
V (T )← L
E(T )← ∅
while |L| > 3 do

for each node i ∈ L do
ri ← 1

|L−2|
∑

k∈L dik

M ←∞
for each node pair (i, j) ∈ L × L do

Dij ← dij − (ri + rj)
if Dij < M then

∗ if {i, j} 6⊂ LC OR parC(i) = parC(j) then
M ← Dij , I ← i and J ← j

V (T )← V (T ) ∪ {K}
E(T )← E(T ) ∪ {(K, I)} ∪ {(K, J)}
for each node m ∈ L do

dKm ← 1
2(dIm + dJm − dIJ)

dIK ← 1
2(dIJ + rI − rJ)

dJK ← dIJ − dIK

L ← (L ∪ {K}) \ {I, J}
∗ if {I, J} ∩ LC 6= ∅ then
∗ if chi(parC(I)) = {I, J} then
∗ parC(K)← parC(parC(I))
∗ else if I ∈ LC then
∗ parC(K)← parC(I)
∗ else if J ∈ LC then
∗ parC(K)← parC(J)
∗ LC ← (LC ∪ {K}) \ {I, J}

add a new node K that joins the remaining three nodes in L

Table 3.1: Algorithm for constrained neighbour-joining. Lines labeled by ‘∗’ are specific to
constrained neighbour-joining. By removing these lines, we can get the ordinary NJ algorithm.
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3.3 Rooting Trees

Any phylogenetic tree is a rooted tree given the hypothesis that all organisms on Earth
had a common ancestor. However, neighbour-joining and likelihood method can only
reconstruct an unrooted tree, and so algorithms must be developed to root a tree. In
fact, rooting is of the same importance as building a tree. A wrong root leads to a
different story.

There are several ways to root a tree. The most widely used one is to select an
outgroup sequence among all the leaves, and directly put the root on the branch that
connects the outgroup. However, in lack of adequate biological evidence, outgroups are
hard to decide especially for some complex gene families. It is impossible to automati-
cally define an outgroup for every TreeFam family, and so this method is not applicable
to TreeFam.

Another method is to minimize the height among all the possible rooted trees, which
can be achieved by placing the root at the middle point of the longest chain of consec-
utive edges. It works well if deviations from molecular clock is not that much (Durbin
et al., 1998). This method was further extended in Bayesian framework (Huelsenbeck
et al., 2002).

A more sophisticated method, the one used by TreeFam, is to minimize the dis-
similarity between the gene tree and a species tree (Zmasek and Eddy, 2001a), which
can be achieved by enumerating all the possible rooted trees and choosing the one that
contains fewest duplications and losses under parsimonious species map (Chapter 4). If
all sequences in the multialignment belong to one gene familyand the gene family does
not suffer from massive losses, this method is usually able to find the correct root. It
is worth noticing that both duplications and losses should be counted when rooting a
tree. Merely considering duplications will frequently result in several rooted topologies
with the same number of duplications (Page and Charleston, 1997).

3.4 Bootstrapping: testing topological stability of un-
rooted trees

From the statistical point of view, sequences that are used to reconstruct a tree are
randomly sampled from whole genome sequences, and therefore the topology of the tree
built from these sequences is also a random variable to some extent. It is important to
check whether a tree built from current observed sequences are stable in the sense that
it is less affected by stochatic evolution events; otherwise the resultant tree will not be
useful to represent the history of evolution.

Several methods are available to test the topological stability. The most widely used
one is bootstrapping (Efron, 1979; Felsenstein, 1985). The input of bootstrapping are an
unrooted tree T and its underlying multialignment (Xij)n×m where Xij is the residue
(amino acid or nucleotide) at i-th position of the i-th sequence. Its output are the
frequencies of each T ’s branch appearing in the resampled trees built from randomly
generated multialigns from (Xij). During one round of bootstrapping, the columns
(sites) of (Xij) is randomly resampled with replacement for m times. These resampled
columns (sites) then form a new multialignment (Xr

ij), from which a resampled tree T r
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is built. For each branch A|B ∈ T̃ , we add 1 to the counter at A|B if A|B ∈ T̃ r, and
add 0 if not. When we repeat this procedure for many, say 1000, times, we will know
the counter at each branch of T . The value of these counters are called bootstrapping
values. The higher, the better.

Mathematically, given a multialignment (Xij)n×m and an unrooted tree T built from
X, a resampled multialignment (Xr

ij) is a random matrix:

Xr
ij = XiJj (3.1)

where each random variable Jj , j = 1, . . . ,m, follows discrete uniform distribution
between [1,m]. That is, for all k = 1, . . . ,m, Pr{Jj = k} = 1

m . Let T r is the tree built
from alignment Xr, the bootstrapping support for each bipartition A|B ∈ T̃ will be:

B(A|B) = Pr{bipartition A|B ∈ T̃ r} (3.2)

The procedures described above can be adapted to calculate bootstrapping supports
for two rooted trees, but this is seldom used given the difficulty in rooting. In addition,
bootstrapping are also helpful to evaluate the stability of other properties of trees. The
basic idea is similar to the procedure described above.

3.5 Reordering External Nodes

In mathematical angle, a tree is an abstract entity. Its leaves form a set and never
have any sense of order. When the tree is visualized on a paper, however, we must
place the leaves in certain order. Although the plotted trees on the plane represent the
same tree no matter how the order is specified, these planar trees are quite different to
human eyes. When one tree is plotted twice in differeny leaf orders, it is sometimes hard
to recognize they are virtually the same; when two large trees are compared, finding
inconsistent branches always turns out to be extremely difficult. How to plot the tree
in a regulated way is very important to the visualization of phylogenetic trees.

This section aims to plot a tree, or equivalently to order the leaves, in a regulated
way that makes similar trees always be plotted in a similar manner. To achieve this
goal, we will assign a weight to each leaf, and design an objective function such that
when optimized, leaves with smaller weights tend to be placed before those with big-
ger weights. This optimization can be achieved in O(N) with an intuitive yet correct
algorithm.

For simplicity, only binary rooted trees will be considered in this section. General-
ization to multifurcated rooted trees is basically easy.

3.5.1 Leaf reordering problem and algorithm

Given a binary rooted tree G with n leaves (i.e. |VE(G)| = n), an order of G is a
one-to-one map I : VE(G) → {1, . . . , n}, such that there exists an NH string satisfying
v ∈ VE(G) appears in the I(v)-th position of the string. If G is a binary tree, 2n−1

different orders exist, representing independent branch switch at n − 1 internal nodes.
As discussed in section 1.4.2, an NH string has a natural 1:1 relation to the ‘image’
of a tree. An order I actually decides how the tree should be plotted on the paper
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(Figure 3.2). If we assign a weight W (v) ∈ < to each leaf v ∈ VE(G), leaf reordering
problem is to find an order I that minimizes the object function:∑

v∈VE(G)

[W (v)− αI(v)]2 (3.3)

where α > 0 is a constant. As I is one-to-one, map I−1 must exist. We can transform
Equation 3.3 as:

min
I

∑
v∈VE(G)

[W (v)− αI(v)]2

=
∑

v

W 2(v) +
∑

v

α2I2(v)− 2α max
I

∑
v

W (v)I(v)

=
∑

v

W 2(v) + α2
∑

i

i2 − 2α max
I

∑
v

W (v)I(v)

∼ max
I

∑
v

W (v)I(v)

= max
I

n∑
i=1

i ·W (I−1(i))

Thus leaf reordering problem is equivalent to find I that maximize

n∑
i=1

i ·W (I−1(i)) (3.4)

A

B

C

D

C

D

A

B

Figure 3.2: Example for explaining the order of a tree. Both trees showed in this figure are
exactly the same tree but with different orders. In the left, the corresponding NH string is
((A,B),(C,D)), and therefore I(A) = 1, I(B) = 2, I(C) = 3, and I(D) = 4; in the right, NH
string is ((C,D),(A,B)), and I ′(A) = 3, I ′(B) = 4, I ′(C) = 1, and I ′(D) = 2.

A naive solution to leaf reordering problem is to enumerate all the possible I. This
works, but is of course a bad algorithm. As a matter of fact, branch switch at different
internal nodes are independent of each other. This means the switch that lead to the
reduction of the cost function 3.3 will always help to reduce the cost no matter how the
other branches are switched. As a result, we can always apply n−1 times of independent
switch to find the order I∗ that minimize equation 3.3. Now the remaining issue is how
to choose an optimal switching pattern at an internal node. In fact, the rule is quite
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simple: at an internal node, switch the branch such that the average leaf weight of its
left subtree smaller than the average weight of its right subtree. Let’s prove it.

Figure 3.3 shows two orders: I, before switching, and I ′, after switching. Let wi ≡
W (I−1(i)) and w′

i ≡ W (I ′−1(i)), i = 1, . . . , n. Then wi is the weight of i-th leaf under
the order I and w′

i is the weight of i-th under the order I ′. From the caption of the
figure, we know such relationships stand:

wi = w′
i (i = 1, . . . , j, j+k+l+1, . . . , n)

wi+j = w′
i+j+l (i = 1, . . . , k)

wi+j+k = w′
i+j (i = 1, . . . , l)

Then we can compare the cost function 3.4 before and after branch switching:
n∑

i=1

i ·W (I−1(i))−
n∑

i=1

i ·W (I ′−1(i))

=
n∑

i=1

iwi −
n∑

i=1

iw′
i

=
j+k+l∑
i=j+1

iwi −
j+k+l∑
i=j+1

iw′
i

=

[
k∑

i=1

(i+j)wi+j +
l∑

i=1

(i+j+k)wi+j+k

]
−

[
l∑

i=1

(i+j)w′
i+j +

k∑
i=1

(i+j+l)w′
i+j+l

]

=

[
k∑

i=1

(i+j)wi+j +
l∑

i=1

(i+j+k)wi+j+k

]
−

[
l∑

i=1

(i+j)wi+j+k +
k∑

i=1

(i+j+l)wi+j

]

=
l∑

i=1

kwi+j+k −
k∑

i=1

lwi+j

= kl ·

(
1
l

l∑
i=1

wi+j+k −
1
k

k∑
i=1

wi+j

)

In this formula, 1
k

∑k
i=1 wi+j is the average leaf weight of the left subtree before branch

j + 1
...

j + k

j + k + 1
...

j + k + l

{

{

j + 1
...

j + l

j + l + 1
...

j + l + k

}

}
Figure 3.3: Two orders before and after branch switching. After switching, the (j + 1)-th leaf
in the left tree appears at the (j + l + 1)-th position in the right, while the (j + k + 1)-th leaf at
(j+1)-th. Mathematically, I ′(I−1(j+i)) = j+l+i when i = 1 . . . k, and I ′(I−1(j+k+i)) = j+i
when i = 1 . . . l.
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switching and 1
l

∑l
i=1 wi+j+k is the weight of the right. Thus a switch is only favoured

when the average weight of the right subtree is lower. This proves the statement in the
previous paragragh, and therefore proves the tree reordering algorithm.

3.5.2 Defining weight functions

Clearly, weight function W (·) determines how the tree should be ordered. Two forms
of weight functions are now used in TreeFam. The first form is calculated based on an
ordered (or a plotted) species tree; the second based on an ordered gene tree.

Assume we have a species tree S and an order Is : VE(S) → {1, . . . , |VE(S)|}. The
weight of g ∈ VE(G) can be defined as:

Ws(g) = Is(M(g)) (3.5)

where M(g) ∈ VE(G) is the species of gene g. Such a weight function tries to place the
G’s leaves in an order that resembles S.

Leaf ordering also helps to compare two trees with the same leaf set. Assume we
have a plotted tree G0 and its order I0, and we want to display G1, which is built with
a different algorithm, in a similar manner. We can define:

W0(g) = I0(g) (3.6)

If the two trees are identical, objective function 3.3 will equal to zero if α = 1. Then
the two will be plotted exactly in the same way. Nonetheless, it is worth to be noticed
that equation 3.3 may also be zero if the two tree do not differ much (Figure 3.4).
This is because the objective function only considers the order of leaves but ignores the
changes in internal nodes. To compare the topological difference, counting number of
shared branches is preferable. Chapter 6 gives more details.
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rat mou1 mou2 hum chig :
1 2 3 4 5I(g) :

G1

gc
1

gc
2

hum chi mou1 mou2 ratg :
4 5 2 3 1W (g) :

G2

6/39/2

gc
1

gc
2

rat mou1 mou2 hum chig :
1 2 3 4 5W (g) :

G2

gc
1

gc
2

mou1 mou2 rat hum chig :
2 3 1 4 5W (g) :

G2

1/15/2

Figure 3.4: Example of leaf reordering algorithm. Tree G1 is an ordered tree. The goal is to
place the leaves of G2 in an order similar to G1. The top-right tree shows the original order.
At node gc

2, the average weight of left subtree is 4.5, larger than the weight of right subtree.
A branch switch should be applied, which results in the image in the bottom-right. At gc

1, the
weight of left subtree 2.5 is the larger. A branch switch is needed again. In the final tree (in the
bottom-left), G2’s leaves appear in the same order as that in G1, although they have different
topologies.



Chapter 4

Inferring Duplications and Losses

The evolution of Eukaryotic genes is largely shaped by three principal factors: specia-
tion, duplication and loss. First of all, speciation differentiates genes into descendants.
The story of each gene family also reflects the history of species. When an ancestor
species speciates, all of its genes will be separated into two clades at the same time and
evolve almost independently. Whereas speciations do not create new genes, duplications
add more genes to a species and the descendant species as well, and thus provide candi-
dates for natural selection. When more redundant genes come into being, losses, which
tend to occur following a duplication, eliminate copies that are of little importance to
the species. Genes evolve, birth and die, telling the complete history of individual gene
families1. Figure 4.1 shows an example of how duplications and losses shape the evolu-
tion of genes. If we take the duplication/loss inference presented by the tree, the history
of this gene family follows. In the earliest ancestral species Chordata there was only
one gene. It underwent a duplication in the ancestral species Euteleostomi, and since
then it had two copies in each species descendant from Euteleostomi. The first copy
evolved normally except for two succesive duplications in mouse, the second was lost in
Eutheria subclass. This is the story reflected by this gene tree.

The only way to infer duplications and losses is to compare the gene tree to the
species tree (Figure 1.2). This process is usually called tree reconciliation which was
first suggested by Goodman (Goodman et al., 1979), and implemented and improved
by many successors (Page, 1994; Guigo et al., 1996; Eulenstein et al., 1998). Recently,
Zmasek and Eddy (Zmasek and Eddy, 2001a) have presented an elegant algorithm that
greatly simplifies duplication inference. Dufayard et al. (Dufayard et al., 2005) further
developed algorithms that could handle multifurcated species trees, though no detail is
provided. All these algorithms can be classified as parsimonious methods in that the
number of duplications and losses is minimized. A Bayesian method (Arvestad et al.,
2003) was also developed, which is claimed to be more effective in reducing missing
duplication events.

In this chapter, we will introduce a generalized theory for duplication/loss infer-
ence, and develop simple algorithms for such inference in the meantime. Our methods

1LGT (Lateral Gene Transfer), which is thought to occur between viruses, and to a lesser extent
between prokaryotes, is also a possible factor in interpreting a gene tree. However, LGT seldom occurs
among Eukaryotes (Stanhope et al., 2001; Salzberg et al., 2001; Roelofs and Van Haastert, 2001; Frickey
and Lupas, 2004).
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are based on Zmasek and Eddy’s work, but generalized in case of loss inference and
multifurcated species trees.

4.1 Species Map

To describe the inference of duplication/loss, it is necessary to bridge a gene tree and
a species tree. This bridge is called species map that maps a gene, whether present
or ancestral, to the species that historically possessed the gene. When we know to
which species a gene belonged, we could pinpoint species evolution and gene evolution,
reconstruct the history, and smoothly infer the duplications and losses.

Mathematically, let G be a gene tree, and S a species trees, both rooted. Given
g ∈ VE(G), a present gene, let sg ∈ VE(S) be the species of gene g. A map M :
V (G) → V (S) is called a species map if it satisfies the following conditions for any
g ∈ V (G): (i) M(g) = sg if g ∈ VE(G), (ii) sg′ ≤ M(g) for all g′ ∈ ωG(g) and (iii)
M(g) ≤ M(g′) if g < g′. Map M embeds a species tree into a gene tree and describes
how the evolution of species shapes gene evolution. In the following section, we will see
that M alone determines duplications and losses, and thus how to choose M is the key
to duplication/loss inference.

Given a specified gene tree and species tree, many maps will satisfy the two condi-
tions. Likelihood methods choose the one that maximizes the likelihood under certain
statistical model. This process is extremely time-consuming. In contrast, parsimony
methods simply select the the parsimonious species map M∗ that will lead to fewer
duplications or losses in the end. Without any proof here, we point out that M∗ can
be simply constructed as:

M∗(g) = lca({sg′ : g′ ∈ ωG(g)}) (4.1)

Eutheria [loss]

CCNI_human

ENSPTRT00000030141_chimpanzee

ENSCAFT00000013762_dog

Ccni_mouse

ENSMUST00000058380_mouse

ENSMUST00000054409_mouse

XP_214007_rat

XP_420590_chicken

GSTENT00004608001_T.nigroviridis

SINFRUT00000165765_pufferfish

ENSGALT00000011124_chicken

GSTENT00033752001_T.nigroviridis

SINFRUT00000148117_pufferfish

ENSCINT00000007140_C.intestinalis

GENE1

GENE2

Homo/Pan/Gorilla

Eutheria

MOUSE

MOUSE

Murinae

Eutheria

Amniota

Tetraodontidae

Euteleostomi

Tetraodontidae

Euteleostomi

Euteleostomi

Chordata

Amniota

Figure 4.1: Example of gene evolution. A slant name beside an internal node shows the ancestral
species that contained the correponding ancestral gene. They are actually M∗(g) for each g
under parsimonious species map (Section 4.1). Duplications (the three bold nodes) and loss
(the gray boxed name) are inferred using methods that will be described in this chapter.
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Obviously M∗ is a species map, and in fact, M∗(g) is the most recent possible species to
which g belonged in history. Partly, this is also a reason why M∗ is called a parsimonious
map. Figure 4.2 gives an example of a parsimonious map and a common one.

4.2 Duplication/Loss Inference (DLI)

Ideally, a duplication can be observed if one species appears two or more times in a gene
tree. This is true if no loss occur. But when loss occur, this will overlook duplications.
We must recover the lost genes before we make such inference. For a binary species
tree, we can simply compare M(g) and M(par(g)) (Zmasek and Eddy, 2001a), and infer
par(g) as a duplication if M(g) = M(par(g)); for a multifurcated tree, however, this rule
will overestimate duplication events. As showed in Figure 4.3, both g and gp ≡ par(g)
are mapped to Eutheria, but gp still represents speciation event, not duplication. In
order to generalize DLI (duplication/loss inference) in case of a multifurcated species
tree, it is helpful to explicitly recover the species that are lost in gene trees.

Human Rat Mouse Chicken

S

hum rat mou chi

g

G

M∗

Human Rat Mouse Chicken

S

hum rat mou chi

g′

G

M ′

Figure 4.2: Example for illustrating species map. The top figure shows the parsimonious species
map M∗ between species tree S and gene tree G. Under this map, each gene evolved nor-
mally. No duplication or loss occurred. The bottom shows another species map M ′ for the
two trees. Under M ′, at least one historical duplication (at node g′) and two losses (showed in
dashed branches) occurred in this gene family. Note that in this example, branch length has no
meanings.
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Given this fact, we introduce new notations:

σ′(g) = {sg′ : g′ ∈ ωG(g)} (4.2)

and

σ(g) = σ′(g) ∪ {s ∈ VE(S) : ∃s′ ∈ σ′(g), lca(s, s′) < M(g)} (4.3)

While σ′(g) only consists of present species that can be observed in the tree, the second
set in Equation 4.3 also includes lost species in G|g subtree. As a consequence, set σ(g)
consists of the species that should appear in G|g if no loss occurs in this subtree.

Although the definition of σ(g) looks complicated, it is irreplaceable. This can be
seen from the relation between the three sets σ′(g), σ(g) and ωS(M(g)): σ′(g) ⊂ σ(g) ⊂
ωS(M(g)) where σ′(g) = σ(g) stands if no loss occurs, while σ(g) = ωS(M(g)) if M(g)
is a binary node. Figure 4.3 also gives a concrete example where the three sets are
different. As we will see in the following text, σ(g) plays a critical role on DLI.

4.2.1 Inferring duplications and orthologs

If g ∈ VE(G) is a duplication and no loss occurs in G|g1 and G|g2 , chi(g) = {g1, g2},
we would expect to see σ′(g1) = σ′(g2). If losses occur, however, it is possible that
σ′(g1) ∩ σ′(g2) = ∅. In this case, σ(g) will play its role due to its inclusion of the lost
species. Formally, g is a duplication (or duplication occurred at g) if σ(g1)∩ σ(g2) 6= ∅,
where chi(g) = {g1, g2}. Figure 4.4 shows an example.

Orthologs are genes in different species that originate from a single gene in the last
common ancestor of these species (Remm et al., 2001). Accordingly, in a gene tree, two
present genes g1 and g2 are said to be orthologs if lca(g1, g2) is not a duplication. This
simple condition exactly capture the meaning of biological definition.

Human Mouse Rat Dog Chicken

S

M∗(g) = M∗(gp) =Eutheria

hum rat dog chi

G

g

gp

Figure 4.3: Example to explain σ(g) set. In the left is a species tree S with a multifurcated
node; in the right is a gene tree G with a loss. Node g ∈ V (G) is mapped to M∗(g) under
the parsimonious map M∗, and gp mapped to M∗(gp) = M∗(g). In this example, σ′(g) =
{Human,Rat}, σ(g) = {Human,Mouse,Rat} and ωS(M∗(g)) = {Human,Mouse,Rat ,Dog}.
They are all different from one another: σ′(g) is smaller than σ(g) because the mouse gene is
lost, while ωS(M∗(g)) is bigger because M∗(g) is a trifurcation.
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4.2.2 Inferring losses

We next seek to find a set loss(g) ⊂ V (S) that consists of species in which gene losses
occur when gp ≡ par(g) evolved into g. Note that in this way, loss(g) will actually be
localized at the branch between gp and g. Thus the calculation at one node will not
interfere with the calculation at another one, and the total number of loss events in the
tree G is simply the sum of |loss(g)| of each node g ∈ V (G).

As duplication and speciation represent different biological events, whether gp is a
duplication or not makes a little difference. If gp is a duplication, subtree G|gp and G|g
should in theory consist of same species. When this is violated, losses must happen and
s ∈ σ(gp) \ σ(g) covers all the species in which gene losses occur. If gp is a speciation,
besides the condition s ∈ σ(gp) \ σ(g), a lost s must appear only in M(gp)’s subtree
containing M(g), or equivalently, must satisfy lca(s,M(g)) < M(gp). We denote by
loss′(g) the set of present species that are lost in the gene tree2:

loss′(g) =
{

σ(par(g)) \ σ(g) if par(g) is a duplication
{s ∈ σ(par(g)) \ σ(g) : lca(s,M(g)) < M(par(g))} otherwise

(4.4)
Set loss′(g) consists of present species that cannot be observed due to losses between
g and gp = par(g). However, this is not good enough. A loss of ancestral species will
cause the losses of all the descendant present species. Based on parsimonious rule, we

2Given two sets A and B, A \B = {a : a ∈ A, and a /∈ B}.

G1_Human

G1_Rat

G1_Chicken

G2_Chicken

g1

g0

G1_Mouse [lost]

G2_Human [lost]

G2_Mouse [lost]

G2_Rat [lost]Murinae [lost]

Eutheria [lost]

Murinae

Amniota

Eutheria

Amniota

Amniota

Figure 4.4: Example of duplication/loss inference. A slant name beside each internal node in-
dicates the ancestral speices that contained the corresponding ancestral gene. Gray colour and
slant leaves show the genes that cannot be observed nowadays due to loss events. In this gene
tree, σ(G1 rat) = {Rat}, σ(G2 chicken) = {Chicken}, σ(g0) = {Huamn, Mouse, Rat, Chick}
and σ(g1) = {Human, Mouse, Rat}. Node g1 is a speciation, and therefore loss(G1 rat) =
loss′(G1 rat) = {Mouse}, while g0 is a duplication and loss′(G2 chicken) = σ(g0) \
σ(G2 chicken) = {Human, Mouse, Rat} which makes loss(G2 chicken) = {Eutheria}.
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would like to count this as one loss event. For this purpose, we define:

loss(g) = {s ∈ V (S) : ωS(s) ⊂ loss′(g), ωS(par(s)) 6⊂ loss′(g)} (4.5)

Set loss(g) avoids over-counting. It is actually the minimum set A ⊂ V (S)
satisfying ωS(A) = loss′(g). Also take Figure 4.1 as an example. In this
gene tree, loss′(ENSGALT00000011124 chicken) = {human,mouse, rat , dog} and
loss(ENSGALT00000011124 chicken) = {Eutheria}. Eutheria is just the species where
the loss occured. Figure 4.4 gives another example.

4.3 Duplication Function and Loss Function

Both duplication function and loss function are defined on VI(G):

DG(g) =
{

1 if g is a duplication
0 otherwise

(4.6)

LG(g) =
∑

g′∈chi(g)

|loss(g′)| (4.7)

Duplication function DG(g) measures whether g is a duplication; loss function LG(g)
counts losses when g evolved into its children. Obviously, the total number of dupli-
cations and losses in gene tree G simply equal to

∑
DG(g) and

∑
LG(g) respectively.

Given a common species map M , the definitions of duplication and loss functions must
depend on the topology of the gene tree G, but if parsimonious species map M∗ is
applied, duplication and loss functions can be topology-independent. This will be re-
examined in Section 5.2 when set representation is introduced.

4.4 Towards Statistical Methods

hum rat mou chi

Eutheria

G

Murinae

Figure 4.5: Example showing the failure of parsimonious species map. Assume the the true
history of gene evolution included one duplication at Eutheria and two losses in Murinae and
Human. The human gene and the mouse gene are not orthologs. Arbitrarily applying the
parimonious species map M∗ will always miss these events and wrongly infer the two genes as
orthologs.
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In this section, we will come back to the selection of species map M that uniquely
determines how the duplication and loss are inferred. Usually we only take the parsimo-
nious species map M∗ due to its simplicity, but unfortunately nature does not always
follow the parsimonious rule. In a multigene family where duplications and losses tend
to occur frequently, arbitrarily choosing M∗ might underestimate the numbers and lead
to more orthologs (Figure 4.5). More sophisticated method that could possiblely select
the species map other than M∗ should be applied this time. A Bayesian method has
been introduced by Arvestad et al. (Arvestad et al., 2003; Arvestad et al., 2004) and
cleverly solve this problem. We do not intend to present detailed description, which
is far beyond the scope of this thesis. We only add more remarks in comparison of
parsimonious M∗ and M favoured by Bayesian method.

In Bayesian framework, the desired species map is the one that maximize the pos-
terior probability Pr{M |G, S}, which can be calculated as:

Pr{M |G, S} =
Pr{M,G|S}

Pr{G|S}

=
1

Pr{G|S}
·
∫

µ

∫
λ

Pr{M,G, µ, λ|S} dµ dλ

=
1

Pr{G|S}
·
∫∫

Pr{M,G|S, µ, λ}Pr{µ, λ|S} dµ dλ

=
1

Pr{G|S}
·
∫∫

Pr{M,G|S, µ, λ}p(µ, λ|S) dµ dλ

where λ is the birth rate, µ is the loss rate and p(µ, λ|S) is the prior probability of (µ, λ)
given a species tree S. When no prior knowledge is available, we usually take bounded
uniform distribution as what Arvestad et al. has done. In this equation, Pr{G|S} is a
constant given a specified G. Then all we should do is to calculate Pr{M,G|S, µ, λ}.
If we assume that when separated, whether by speciation or duplication, genes evolved
independently, Pr{M,G|S, µ, λ} can be written as the product of a series of independent
factors3:

Pr{M,G|S, µ, λ} =
∏

s∈V (S)

∏
g∈M−1(par(s))

qG(g, s) (4.8)

where qG(g, s) is the probability of forming the observed gene tree when a single gene g of
par(s) evolved into its descendants of species s. Thus

∏
g∈M−1(par(s)) qG(g, s) represents

the probability of forming the observed gene tree when species par(s) evolved into s.
As to the calculation of qG(g, s), Arvestad et al. presents detailed descriptions base on
previous works (Nee et al., 1994; Yang and Rannala, 1997).

Bayesian method establishes an elegant framework for tree reconciliation and also
for various complex analyses about gene evolution, including reconstructing species
trees and gene trees with the help of each other (Arvestad et al., 2004). However,
Bayesian method might be faced with a few theoretical difficulties both in biological
angle and in mathematical angle. First of all, separated genes, either by duplication or
speciation events, did not evolve independently. Losses tended to occur after massive

3M−1 : V (S) → 2V (G) can be regarded ass the reverse of species map M .
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duplications. One-copy genes were also less likely to be lost. These facts are not modeled
in Bayesian framework at present. Furthermore, Bayesian method has to work with a
prior distribution, which can improve the accuracy when correctly formed but may also
induce bias when not carefully selected. Unfortunately, bounded uniform distribution
of λ and µ is not appropriate. On one hand, from the known gene trees in TreeFam (Li
et al., 2006), birth rate λ and death rate µ are centered around small values; on the
other hand, in order to deal with families with massive duplications and losses where
parsimony fails, bound values must be large enough. This produces the confliction.
Whereas the use of parsimonious map never produces false duplications when the gene
tree is correct, the use of Bayesian one will, and the use of such a uniform distribution
will further aggregate the problem because the higher probabilities at larger λ and µ
tend to favour more duplications. False duplications, which might cause more problems
than missing some, have to be evaluated before we apply Bayesian method in practice.

In most cases where µ and λ are small, parsimonious species map M∗ is accurate
enough. Although in a complex gene family where duplications and losses frequently
occurred it can be wrong, use of Bayesian method does not give us more confidence when
even the gene tree is questionable. Furthermore, under parsimonious map duplication
and loss functions also become topological independent. These properties make M∗

particularly useful in Chapter 5.



Chapter 5

Tree Merge

Phylogenetic trees are essential to various evolutionary studies. Due to their irreplace-
able positions, many algorithms were developed to reconstruct phylogenetic trees, in-
cluding distance-based methods, parsimony methods (Fitch, 1971), max-likelihood algo-
rithms (Felsenstein, 1981) and the recent Bayesian methods (Rannala and Yang, 1996).
Whereas these algorithms establish the fundament of the theory of tree reconstruction,
they have to work with certain evolutionary models in practice such as JTT (Jones et al.,
1992), WAG (Whelan and Goldman, 2001), HKY (Hasegawa et al., 1985), GY94 (Gold-
man and Yang, 1994), and many more. Given the variety of algorithms and models, is
there an ultimate solution to tree reconstruction problems? Unfortunately, the answer
is ‘no’. One of the major causes is the evolutionary heterogeneity over time. Shifts in
site-specific evolutionary rates, which is usually termed as ‘heterotachy’, frequently oc-
cur (Lopez et al., 2002). A model best fit one lineage or time frame may lead to erroneous
inference in another. Although this fact has already been noticed in several previous
works (Weiss and von Haeseler, 2003; Susko et al., 2002) and extensively studied in the
case of few sequences (Kolaczkowski and Thornton, 2004; Gadagkar and Kumar, 2005;
Spencer et al., 2005; Philippe et al., 2005), little was achieved in solving the problem
practically. Evolutionists still have to build trees with various algorithms and models,
and combine the results with prior knowledges and personal experiences. But how on
earth do they assess different trees? Is there a way to achieve this automatically? This
chapter aims to answer these two questions.

In order to understand how a tree can be evaluated by evolutionists, let’s first
see an example. Figure 5.1 shows two trees reconstructed by neighbour-joining, using
synonymous distance (ds) and non-synonymous distance (Nei and Gojobori, 1986; Li,
1993; Goldman and Yang, 1994; Yang and Nielsen, 2000)1 (dn), respectively. Even

1Nonsynonymous distance (dn) counts the number of nucleotide changes that contribute to amino
acid changes, while synonymous distance (ds) counts the number that do not contribute to amino
acid changes. Both kinds of distances can be only calculated in coding regions (CDS). In theory, the
synonymous distance ds tends to date the true evolutionary history more precisely. Although selection
for codon bias might occur, ds is generally less influenced by heterogeneous selective pressure in different
lineages (Ayala, 1999; Baldauf, 2003). However, if the two sequences are separated by a long evolutionary
time, multiple substitutions lead to saturation of ds and make it impossible to estimate ds accurately. As
a consequence, the deep branches of the ds tree are usually unreliable. Conversely, the nonsynonymous
distance dn is not saturated at long evolutionary time-frames and can more effectively resolve the deep
branches of the tree, but if the protein sequences are too similar, too few non-synonymous changes will
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without any additional information, we can tell that the deeper branches in dn tree and
lower branches in ds tree are more likely to be correct. This judgement is based on three
rules: (i) reliable branches tend to have higher bootstrapping support; (ii) synonymous
trees are more effective between close sequences, while nonsynonymous tree are better
at deeper branches; (iii) correct gene trees usually resemble the species tree. If we can

have accumulated to estimate dn accurately. The lower branches of dn tree tend to be less accurate.
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ENSGALT00000011124_chicken
ENSXETT00000009033_frog

ENSDART00000050533_zebrafish
GSTENT00033752001_T.nigroviridis

SINFRUT00000148117_pufferfish
ENSCINT00000007140_C.intestinalis

100

97

52

67

34

62

100

100

100

97

100

100

92

95

dS CCNI_human
ENSPTRT00000030141_chimpanzee

ENSCAFT00000013762_dog
Ccni_mouse
ENSMUST00000058380_mouse

ENSMUST00000054409_mouse
XP_214007_rat

XP_420590_chicken
ENSXETT00000009033_frog

ENSGALT00000011124_chicken
ENSDART00000050533_zebrafish

GSTENT00004608001_T.nigroviridis
SINFRUT00000165765_pufferfish

GSTENT00033752001_T.nigroviridis
SINFRUT00000148117_pufferfish

ENSCINT00000007140_C.intestinalis

100

91

92

91

99

91

60

30

100

100

47

12

5

11

dN+dS CCNI_human
ENSPTRT00000030141_chimpanzee
ENSCAFT00000013762_dog
Ccni_mouse
ENSMUST00000058380_mouse
ENSMUST00000054409_mouse
XP_214007_rat
XP_420590_chicken
GSTENT00004608001_T.nigroviridis
SINFRUT00000165765_pufferfish
ENSGALT00000011124_chicken
ENSXETT00000009033_frog
ENSDART00000050533_zebrafish
GSTENT00033752001_T.nigroviridis
SINFRUT00000148117_pufferfish
ENSCINT00000007140_C.intestinalis

100

97

92

91

99

91

100

100

100

97

100

100

92

95

Figure 5.1: Example of tree merge. Non-synonymous tree dN was merged with synonymous
tree dS, both reconstructed with neighbour-joining. Bold lines in the merged tree show the
branches coming from dS, while the rest from dN. The resultant tree contains fewer losses and
have higher bootstrapping support.
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develop an algorithm that can account of these rules, it is possible to automatically
make a better tree by merging several trees built with different methods. This is tree
merge algorithm.

Tree merge is a process of choosing optimal children between branches shared by
candidate trees. As we want to shape the algorithm in a precise and strict way, many
abstract notations have to be used. And therefore, we start this chapter by introduc-
ing the third type of representation of trees, set representation. Then the tree merge
problem is formally raised. After the description and proof of the algorithm, we analyze
the time complexity of this algorithm. In the following chapter, the effectiveness of tree
merge will be assessed together with a lot of single-model algorithms.

5.1 Set Representation of Trees

Graph representation is more intuitive, but it is not convenient in comparing rooted
trees built from the same sequence set using different algorithms. In graph language,
identical trees are judged by comparing the vertex sets and edge sets at the same time.
But this is unnecessary. The edges or branches of a rooted tree are naturally determined
by the subset of leaves that are descendant from the lower node of the edge; in turn,
we can use a set of leaf subset to represent the topology of a rooted tree 2. Thus,
topological comparison can be reduced to set comparison, which is more concise and
straightforward.

1 2 3 4 5

G

ḡ = {1, 2, 3} g

{2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Figure 5.2: Example of set representation. Set ωG(g) is labeled at each internal node. The
set representation of G is Ḡ = {{1}, {2}, {3}, {4}, {5}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}.
Conversely, when we get Ḡ, we will also know the topology of G. Furthermore, if we let
ḡ = {1, 2, 3}, Ḡ|ḡ = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}} is the set representation of G|g.

Let V be a leaf node set, and Σ(V ) = {G is a rooted tree : VE(G) = V } be the tree
space in which each element is a rooted tree whose external node set is V . For any
G ∈ Σ(V ), we can construct a set Ḡ ⊂ 2V 3 using the ωG map (Equation 1.1) as follows:

Ḡ = {ḡ ⊂ V : ḡ = ωG(g), g ∈ V (G)} (5.1)

2Similarly, the topology of an unrooted tree can be represented as a set of bipartitions of the leaf set
3Given a set V , 2V = {A : A ⊂ V } is the set of all the subsets of V including V itself and empty set

∅. 2V is also called the σ-set of V . Note that
˛̨
2V

˛̨
= 2|V | always stands. This is why it is written as 2V .
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Obviously, Ḡ1 = Ḡ2 only stands when the two trees G1 and G2 are topologically equiva-
lent; when G1 differs G2, Ḡ1 and Ḡ2 cannot be the same. As a consequence, Equation 5.1
builds an one-to-one relation between a set Ḡ and a graph G, and therefore G can be
represented by a set Ḡ. This is the set representation of a rooted tree. When we know
Ḡ, we will always construct a tree G under graph representation. We also introduce:

Ḡ|ḡ = {ḡ′ : ḡ′ ∈ Ḡ, ḡ′ ⊂ ḡ} (5.2)

Set Ḡ|ḡ represents subtree G|g. Figure 5.2 shows an example.
Throughout this chapter, notations like Ḡ and ḡ are always under the set represen-

tation.

5.2 Set Forms of Duplication and Loss Functions

In Section 4.3, the duplication and loss functions are defined as (Equation 4.6):

DG(g) =
{

1 if g is a duplication
0 otherwise

(5.3)

LG(g) =
∑

g′∈chi(g)

|loss(g′)| (5.4)

The two functions defined in this way are dependent on the topology of the gene tree G.
As a matter of fact, if the parsimonious species map M∗ is applied to infer duplications
and losses, the two functions can be defined in a way independent of G. Let’s re-examine
the deduction of duplication and loss under set representation.

In the following text, we always let ḡ, ḡ1 and ḡ2 be a subset of VE(G). From
Equation 4.1 and 4.3, we define:

σ′(ḡ) = {sg′ : g′ ∈ ḡ} (5.5)
M∗(ḡ) = lca(σ′(g)) (5.6)

σ(ḡ) = σ′(g) ∪ {s ∈ VE(S) : ∃s′ ∈ σ′(g), lca(s, s′) < M∗(ḡ)} (5.7)

Thus the parsimonious duplication function is:

D∗(ḡ1, ḡ2) = D∗(ḡ2, ḡ1) =
{

1 if σ(ḡ1) ∩ σ(ḡ2) 6= ∅;
0 otherwise.

(5.8)

Parsimonious loss function can be defined in a similar way:

L∗(ḡ1, ḡ2) = L∗(ḡ2, ḡ1) = |loss∗(ḡ1, ḡ2)|+ |loss∗(ḡ2, ḡ1)| (5.9)

where

loss′∗(ḡ1, ḡ2) =
{

σ(ḡ1 ∪ ḡ2) \ σ(ḡ1) if D∗(ḡ1, ḡ2) = 1
{s ∈ σ(ḡ1 ∪ ḡ2) \ σ(ḡ1) : lca(s,M∗(ḡ1)) < M∗(ḡ1 ∪ ḡ2)} otherwise

(5.10)

loss∗(ḡ1, ḡ2) = {s ∈ V (S) : ωS(s) ⊂ loss′(ḡ1, ḡ2), ωS(par(s)) 6⊂ loss′(ḡ1, ḡ2)} (5.11)
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They correspond to Equation 4.4 and 4.5. Now, parsimonious duplication and loss func-
tions can be calculated given two set of leaves. Such calculation is topology-independent
in the sense that the topologies on the two sets will not affect the calculation process.
This property is particularly useful in constructing the objective function for tree merge
algorithm 5.3.2.

5.3 Tree Merge

5.3.1 Tree merge problem

Given a set of binary rooted trees Φ = {Ḡ1, Ḡ2, . . . , Ḡn}, define a permitted branch set:

G(Φ) =
⋃

Ḡ′∈Φ

Ḡ′ (5.12)

Let Ω(G) be the set of binary rooted tree Ḡ that satisfies Ḡ ⊂ G. Being a subset of
Σ(V ), Ω(G) is the tree space spanned by Ḡ1, Ḡ2, . . . , Ḡn. It is also useful to define a
permitted branch set G|ḡ that is restricted to a node ḡ:

G|ḡ =
⋃

Ḡ′∈Φ

Ḡ′|ḡ (5.13)

Then Ω(G|ḡ) is the tree space spanned by Ḡ1|ḡ, Ḡ2|ḡ, . . . , Ḡn|ḡ.
Let F be a function defined on Σ(V ). The general tree merge problem is to find a

binary rooted tree Ḡ ∈ Ω(G) that optimizes F (·). For common F , the only solution is
to enumerate every tree in Ω and then search for the optimum one. But for a class of
special objective functions, the exhaustive search can be replaced by a simple precise
algorithm. In this thesis, we only consider functions that take the form:

F (Ḡ) =
∑
ḡ∈Ḡ

f(chi(ḡ)) =
∑
ḡ∈Ḡ

f(ḡ1, ḡ2) (5.14)

Such an F (Ḡ) has two critical properties. First, it is additive, and second, function f
is defined on 2V × 2V , which means that the calculation of f(chi(ḡ)) is only dependent
on the elements in ḡ’s children set but independent of the topologies of ḡ’s children.
As we will see in the following section, these two properties, especially the second one,
guarantee that the optimum tree can be found in O(|Φ| · |V |2) time. The (special) tree
merge problem is to find the optimal binary rooted tree in Ω(G) when F (Ḡ) follows
Equation 5.14.

5.3.2 Constructing objective functions

According to Equation 5.14, the effectiveness of tree merge algorithm totally relies on
function f . Before detailed algorithm is described, we should make sure that f is present
and biologically reasonable.

Based on the discussion in Section 5.2, f can be defined as:

f(ḡ1, ḡ2) = f(ḡ2, ḡ1) = αD∗(ḡ1, ḡ2) + βL∗(ḡ1, ḡ2)− γB∗(ḡ1, ḡ2) (5.15)
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where α, β, γ > 0, D∗(ḡ1, ḡ2) and L∗(ḡ1, ḡ2) are the duplication and losses functions,
respectively, and B∗(ḡ1, ḡ2) denotes the highest bootstrapping supports among all trees
containing {ḡ1, ḡ2}. Note that the star in in D∗ and L∗ indicates the parsimonious
species map M∗ is used in DLI inference. These two functions measure the similarity
between a gene tree and the species tree. The smaller, the better. As to B∗(ḡ1, ḡ2),
another possible definition is also available, which will be discussed in the end of this
chapter. In addition, if we know that certain algorithm is good at particular branches,
we can deliberately raise the bootstrapping supports. Consequently, all the three rules
addressed in the introduction section of this chapter have been considered.

5.3.3 Tree merge algorithm

The basic idea of tree merge algorithm resembles that of dynamic programming. It
reduces exhaustive search to the calculation of a function F ∗(ḡ) for each ḡ ∈ G. F ∗ is
defined as:

F ∗(ḡ) = min
Ḡ|ḡ∈Ω(G|ḡ)

F (Ḡ|g) (5.16)

Obviously, F ∗(V ) = min F (Ḡ) always stands. Thus searching optimal tree Ḡ is equiva-
lent to calculating F ∗(V ). When F (·) follows Equation 5.14, F ∗(V ) can be calculated
recursively. To achieve this goal, we need to construct the set of permitted children
pairs given a node ḡ:

C(ḡ) = {{ḡ1, ḡ2} : ḡ1, ḡ2 ∈ G, ḡ1 ∩ ḡ2 = ∅ and ḡ1 ∪ ḡ2 = ḡ} (5.17)

Set C(ḡ) consists of ḡ’s candidate children set. That is, each element {ḡ1, ḡ2} ∈ C(ḡ) can
be ḡ’s children set. Then,

F ∗(ḡ)
= min

Ḡ|ḡ∈Ω(G|ḡ)
F (Ḡ|g)

= min
Ḡ|ḡ∈Ω(G|ḡ)

∑
ḡ′∈Ḡ|ḡ

f(chi(ḡ′))

= min
{ḡ1,ḡ2}∈C(ḡ)

 min
Ḡ|ḡ1∈Ω(G|ḡ1 )

∑
ḡ′1∈Ḡ|ḡ1

f(chi(ḡ′1)) + f(ḡ1, ḡ2) + min
Ḡ|ḡ2∈Ω(G|ḡ2 )

∑
ḡ′2∈Ḡ|ḡ2

f(chi(ḡ′2))


From Equation 5.16 and 5.14, we know that:

F ∗(ḡ) = min
{ḡ1,ḡ2}∈C(ḡ)

{F ∗(ḡ1) + f(ḡ1, ḡ2) + F ∗(ḡ2)} (5.18)

Thus F ∗(V ) can be calculated recursively.
The two equations, 5.17 and 5.18, established the basis of tree merge algorithm.

Table 5.1 presents more details. In practical implementation, hash technique should be
applied to judge whether ḡ has been inserted to G. If the hash function is perfect, only
O(|V |) time is needed to locate and insert a set to G. This will greatly accelerate the
algorithm.
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Hash technique makes tree merge very efficient. In procedure ConstructG, all the
hash values can be calculated in O(n · |V |(|V | − 1)). The following n · (|V | − 1) times
of set comparisons and insertions take O(n · |V |2) time at most. Procedure OptimizeF
traverses all possible ḡ ∈ G and ḡ’s bipartition ḡ = ḡ1 ∪ ḡ2. The time complexity in this
part is also O(n · |V |2). Both BuildTree and TreeMerge can be achieved in O(|V |).
Consequently, the time complexity of tree merge is O(n · |V |2).

Figure 5.3 gives an example of tree merge process. In this exam-
ple, G = {{hum}, {mou1}, {mou2}, {rat}, {chi}, ḡc

1, ḡ
c
2, ḡ3, ḡ4, ḡ5, ḡ6}, C(ḡc

1) =
{{ḡ3, {mou2}}, {{rat}, ḡ5}} and C(ḡc

2) = {{ḡ4, {chi}}, {ḡc
1, ḡ6}}. Only C(ḡc

1) and C(ḡc
2)

consist of more than one node pairs. Other C(·) just has one element. If we
let α = β = 1 and γ = 0 in Euqation 5.15, we know that f(ḡ3, {mou2}) =
1 + 1 = 2, f({rat}, ḡ5) = 0, F ∗(ḡ5) = 1 and F ∗(ḡ3) = 0. Thus F ∗(ḡc

1) =
min{0 + 2 + 0, 0 + 0 + 1} = 1. The children pair {{rat}, ḡ5} is preferable. Simi-
larly, as f(ḡ4, {chi}) = 0, f(ḡc

1, ḡ6) = 3, F ∗(ḡ4) = 1 + 0 + 0 = 1 and F ∗(ḡ6) = 1,
F ∗(ḡc

2) = min{1 + 0 + 0, 1 + 3 + 1} = 1. The children pair {ḡ4, {chi}} is preferred. Con-
sequently, Ḡ∗ = {{hum}, {mou1}, {mou2}, {rat}, {chi}, ḡc

1, ḡ
c
2, ḡ4} gives the final tree

and F (G∗) = F ∗(ḡc
2) = 1.
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Figure 5.3: Example of tree merge algorithm. Tree G1 and G2 are merged into G∗. Bold
nodes show the duplications and the number beside a branch is the number of losses oc-
curing at that branch. For example, |loss({mou1}, ḡ3)| = |{Rat}| = 1 and |loss(ḡc

1, ḡ6)| =
|{Human,Chicken}| = 2.
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5.4 Discussions

Tree merge is able to capture the thinking of evolutionists. Although not a tree-building
algorithm by itself, tree merge can combine the advantages of different tree-building al-
gorithms and models, and automatically choose suitable methods in different lineages.
It is most useful when candidate trees can compensate for the deficiency of one another.
However, just as evolutionists cannot reconstruct correct trees without reasonable can-
didate trees, tree merge is less useful or even wrong if artefact candidates are provided.
Sometimes a human being can detect the artefacts and make a tree outside Ω tree
space, but tree merge cannot achieve. This is the theoretical limitation. Furthermore,
the performance of tree merge is determined by the objective function. An evolutionary
history that breaks the optimization process will fail tree merge, either. When using
tree merge algorithm, we should pay attention to these points.

Tree merge algorithm can also be considered as an alternative algorithm to make
a consensus tree (Margush and Mcmorris, 1981) from a set of resampled trees. All
we need is to modify the definition of B∗(ḡ1, ḡ2) in Equation 5.15. Assume we have n
resampled binary rooted gene trees Φ = {Ḡ1, Ḡ2, . . . , Ḡn}. Given ḡ1, ḡ2 ∈ G(Φ), we can
define B∗(ḡ1, ḡ2) as the number of times when {ḡ1∪ ḡ2} ⊂ Ḡi, i = 1, . . . , n4. In this way,
B∗(ḡ1, ḡ2) is the bootstrapping supports for a branch {ḡ1, ḡ2}. And if we set α = β = 0,
tree merge process is actually the same as that of making a consensus tree from a set
of binary rooted trees. In conclusion, when B∗ is defined as above, tree merge extends
(rooted) consensus tree algorithms by incorporating species evolution, and may help to
improve the quality of the consensus tree.

Tree merge is designed to work with a binary rooted gene tree where the phylogeny
of species is clear. How to root a tree was discussed in 3. In principle, it is also possible
to extend the algorithm in case of unrooted trees, but most of concepts in this chapter
should be modified accordingly. Resolving a multifurcated tree is also tactable. Durand
et al. (Durand et al., 2006) implies an algorithm that may be adapted to resolve poly-
tomies by minimizing duplications and losses. In contrast, the requirement of species
phylogeny is critical. To our experience, no other criterion that satisfies Equation 5.14
can be as effective as this standard.

4B∗ can also be defined in other similar, but different, ways.
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Function:
TreeMerge(V, Ḡ1, Ḡ2, . . . , Ḡn)

Input:
n gene trees Ḡ1, Ḡ2, . . . , Ḡn ∈ Σ(V );

Output:
Tree Ḡ∗ by merging Ḡ1, Ḡ2, . . . , Ḡn

Procedures:
G ← ∅
C ← ∅
ConstructG(Ḡ1, . . . , Ḡn)

for i = 1 to n do
for each ḡ ∈ Ḡi do
G ← G ∪ {ḡ}
C(ḡ)← C(ḡ) ∪ {chi(ḡ)}

selected← ∅
OptimizeF(ḡ)

if F ∗(ḡ) has been calculated then
return F ∗(ḡ)

min←∞
for each {ḡ1, ḡ2} ∈ C(ḡ) do

score← OptimizeF(ḡ1) + f(ḡ1, ḡ2) + OptimizeF(ḡ2)
if min > score then

min← score
minpair ← {ḡ1, ḡ2}

F ∗(ḡ)← min
selected(ḡ)← minpair

BuildTree(ḡ)
if selected(ḡ) = ∅ then

return {ḡ}
{ḡ1, ḡ2} ← selected(ḡ)
return BuildTree(ḡ1) ∪ {ḡ} ∪BuildTree(ḡ2)

TreeMerge(V, Ḡ1, Ḡ2, . . . , Ḡn)
ConstructG(Ḡ1, . . . , Ḡn)
for each v ∈ V do

F ∗({v})← 0
OptimizeF(V )
return BuildTree(V )

Table 5.1: Tree merge algorithm. Procedure ConstructG constructs G and C(ḡ); OptimizeF
recursively calculates F ∗(ḡ) and stores optimum children in selected, from which BuildTree
builds the merge tree. BuildTree generates a tree in set presentation. It can also be easily
adapted to generate a tree G∗ = (V (G∗), E(G∗)) in graph presentation.



Chapter 6

Evaluation of Tree Building
Methods

Whereas the variety of tree-building algorithms give evolutionists the opportunities to
choose the one that best fits the data, the disagreements between these algorithms also
confuse researchers at times. Given a set of sequences, it is not always clear what method
is most effective on a certain condition. In case of one or a few sets of sequences, it is
possible to manually curate the resultant trees. But in the case of large-scale analysis
for hundreds of gene families, such a process is formidable. Even if massive manual
curation can be achieved in the long run, which is major goal of TreeFam (Li et al.,
2006), guild-lines on successful tree-building are definitely beneficial to reduce manual
work and meanwhile avoid artifacts in curation.

A number of studies have been done to investigate the performance of these algo-
rithms. Based on the characteristics of the data sets in use, these studies can be clas-
sified into three types: theoretical analysis on 4- or 5-leaf trees (Gaut and Lewis, 1995;
Huelsenbeck, 1995; Yang, 1996), computational simulation on large data sets (Kuhner
and Felsenstein, 1994; Hall, 2005; Hollich et al., 2005), and real data from experimental
manipulations (Hillis et al., 1992; Hillis et al., 1994; Bull et al., 1997). Although these
studies did provide invaluable information on evaluating different algorithms, they may
still suffer a number of problems respectively: theoretical analysis can only be applied
to very small trees; computational simulation has to work with proposed evolutionary
models or processes; experiment-manipulated data are relatively small and usually de-
veloped on a special condition that may deviate from real evolutionary processes. The
most realistic evaluation is expected to be done with large-scale data that are formed in
true evolutionary history, which, unfortunately, is unknown to us. Is there a way out?

In this chapter, we try to present a novel evaluation on various tree-building algo-
rithms. It differs from previous studies on two aspects: the use of large-scale curated
real data from TreeFam, and the use of model-independent indication: duplications and
losses tend to be minimized. Limited to the potential curation errors in real data and the
possibility that true evolution might favour more duplications and losses in some cases,
it is still too early to make a final conclusion about what algorithm is superior. We only
intend to show some data that will help evolutionists to choose the most appropriate
algorithms in practical use.
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6.1 Evaluated Algorithms and Evolutionary models

Three classical algorithms, distance-based method, parsimony (Fitch, 1971) and ML
(Maximum Likelihood) (Felsenstein, 1981) method, were tested at both nucleotide level
and amino acid level. Two types of merged trees were also included. Table 6.1 shows
the 17 types of trees used in this benchmark. More details will be explained as follows.

Distance-based method is actually the name of a group of algorithms including
Fitch-Margoliash (Fitch and Margoliash, 1967), ME (Minimum Evolution) (Rzhetsky
and Nei, 1993), UPGMA (Sokal and Michener, 1958), NJ (Neighbour-Joining) (Saitou
and Nei, 1987) and several alternatives to standard NJ algorithms. In this benchmark,
only standard NJ and ME algorithms were tested in consideration of their popular-
ity and accuracy. NJ tree was built by NJTREE and ME tree by FastME in GME
framework (Desper and Gascuel, 2004). Distance matrix was calculated by TREE-
PUZZLE (Schmidt et al., 2002). For nucleotide alignment, HKY (Hasegawa et al.,
1985) model was applied with transition/transversion ratio1 estimated from data; for
amino acids alignment, WAG (Whelan and Goldman, 2001) was used. In both cases, we
fixed the shape factor α = 1.0 of Γ distribution which was approximated by 4 discrete
substitution rate categories (Yang, 1994). Alignment gaps were regarded as missing
data2 in TREE-PUZZLE. As TreeFam-1.x trees were built from NJ with p-distance3, a
distance without correction for in-site multiple substitutions4, this simplest model was
also tested this time.

Parsimonious trees were reconstructed by dnapars and protpars, respectively.
Both programs are included in PHYLIP package (Felsenstein, 1989). Tree merge was
applied if several optimal trees were given by the programs. In our test, protpars only
presents binary trees, but dnapars may build multifurcated trees. As both duplica-
tion/loss inference and tree merge algorithm only work with binary trees, some trees
built by dnapars could not be processed.

PHYML (Guindon and Gascuel, 2003) built ML trees. Parameters of evolutionary
models are identical to the ones used in TREE-PUZZLE. That is, HKY for nucleotide
and WAG for amino acids; substitution rates were divided into 4 discrete categories that
approximated a Γ distribution with α = 1.0. Two or one categories were also evaluated
to confirm the role of Γ distribution. It seems that PHYML and TREE-PUZZLE
implemented models in slightly different ways. This can be observed when they were
used to optimize branch length given a specified tree. When we assume substitutions
occur uniformly across sites (one category), PHYML and TREE-PUZZLE can always

1Transitions denote the nucleotide changes between purines (A↔G) or between pyrimidines (C↔T),
while other types of nucleotide changes are all transversions. Biologically, transitions occur more fre-
quently than transversions, and therefore they are modeled differently.

2Likelihood methods are capable of treating gaps as missing data while calculating the distances.
This is more robust.

3P-distance is also called mismatch distance. It actually equals to the percent mismatches in the
matched regions of two sequences.

4In-site multiple substitutions denote multiple substitutions occurring at the same site. For example,
at a certain site nucleotide Adenine (A) was changed into nucleotide Guanine (G) 100 million years ago,
but 50 million years ago, the Guanine (G) was changed back to Adenine (A). Then two substitutions
should be counted even if no substitution is observed nowadays. A sophisticated evolutionary model
can estimate how often this is the case. But when sequences are too diverged, the variance of such
estimation will be very large, and therefore less accurate.
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achieve almost the same results. However, when more than one categories are applied,
their results differ more or less. But as PHYML is unable to give a distance matrix
while TREE-PUZZLE cannot make standard ML trees, this minor inconsistency has to
be tolerated.

Two trees generated by tree merge algorithm were also assessed. The first one was
built by merging a synonymous tree and a non-synonymous tree; the second by merging
two ML trees and also synonymous and non-synonymous trees. As to the objective
function f (Equation 5.15), we set α = 100000, β = 1000 and γ = 1. Bootstrapping
values B was scaled between 0 and 100. This setting always prefers less duplications,
and less losses only if duplications are the same. Bootstrap only works when both D∗

and L∗ are identical. Due to efficiency issue, bootstrapping was not applied to ML trees.
We arbitrarily set bootstrapping support as 80 at each internal branches (branches that
do not connect leaves) given the fact that ML trees tend to be more reliable (Kuhner
and Felsenstein, 1994). Here, bootstrapping values are least favoured because a single
tree-building algorithm might also have high bootstrapping supports at wrong branches.
Duplications are better than losses because in evolution, duplications occur more rarely
while losses more frequently, especially following a duplication event.

Name Method
CUR Curated trees from TreeFam
NJ-NT-HKY4 Neighbour-Joining, HKY model, C = 4, α = 1.0, κ estimated
NJ-AA-WAG4 Neighbour-Joining, WAG model, C = 4, α = 1.0
NJ-NT-dN NJ, non-synonymous distance, no correction for multi-substitutions
NJ-NT-dS NJ, synonymous distance, no correction for multi-substitutions
NJ-AA-MM NJ, p-distance (or mismatch) distance, no correction
NJ-AA-Kmr NJ, with Kimura correction
ME-NT-HKY4 FastME, HKY model, C = 4, α = 1.0, κ estimated
ME-AA-WAG4 FastME, WAG model, C = 4, α = 1.0
PAR-NT Parsimony (dnapars)
PAR-AA Parsimony (protpars)
ML-NT-HKY4 PHYML, HKY, C = 4, α = 1.0, κ estimated
ML-NT-HKY2 PHYML, HKY, C = 2, α = 1.0, κ estimated
ML-NT-HKY1 PHYML, HKY, C = 1, α = 1.0, κ estimated
ML-AA-WAG4 PHYML, WAG, C = 4, α = 1.0
MG-NT-dM Tree merge from NJ-NT-dS and NJ-NT-dN
MERGE Tree merge from ML-NT-HKY4, ML-AA-WAG4, NJ-NT-dN and NJ-NT-dS

Table 6.1: Evaluated algorithms and models. Parameter κ is transversion/transition ratio, α
is the shape parameter of Γ distribution which is approximated by C discrete substitution rate
categories.
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6.2 Construction of Test Sets

Two test sets, TestSet1 and TestSet2, were constructed in favour of curated TreeFam
families. TestSet1 consists of 1041 trees curated in TreeFam-1. These trees were initially
built by NJ-AA-MM. They contain genes from 12 sequenced species: ARATH, SCHPO,
YEAST, HUMAN, MOUSE, RAT, CHICK, BRARE, FUGRU, DROME, CAEBR and CAEEL. The
113 trees in TestSet2 were curated based on TreeFam-2 where seven more species were
added: PANTR, CANFA, XENTR, TETNG, CIOIN, ANOGA and APIME. They were curated
from MERGE trees. Besides the difference in respects of number of species and automatic
methods, trees in TestSet2 were deliberately selected such that they were neither too
simple nor too complex. In contrast, TestSet1 contains some trees that are hard to
curate, and also a lot of simple trees added at the early stage of TreeFam. This fact
can be seen from Figure 6.1. Generally, TestSet2 is of higher quality.

For both test sets, original protein multialignments were directly retrieved from
TreeFam. They were converted to nucleotide alignments by matching each codon to
the corresponding amino acid. Sequences from unsequenced species were discarded.
NJTREE were used to truncate poorly aligned regions and to mask low-scoring seg-
ments. Thompson et al. (Thompson et al., 1997) presented more details.

6.3 Measuring the Quality of Trees

Two criteria were used to evaluate the quality of automatic trees. First, automatic trees
were compared with curated trees. Topological differences between them were measured
by topological distance dT (Robinson and Foulds, 1981), which counts the number of
branches that exist in one tree but not in the other (Kuhner and Felsenstein, 1994).
Topological distance dT can be calculated given unrooted multifurcated trees. It equals
to zero if two trees are identical; it reaches its highest value 2n − 6, where n is the
number of leaves in either tree, if two trees are completely different. Based on dT , the
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Figure 6.1: Distribution of number of leaves in TestSet1 and TestSet2.
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distance between two methods M1 and M2 can be defined given m multialignments:

dM (M1,M2) =
∑m

i=1 dTi(M1,M2)∑m
i=1 2ni − 6

(6.1)

where dTi(M1,M2) is the topological distance between two trees reconstructed by the
two methods based on i-th multialignment, and ni is the number of sequences in the
alignment. Rescaled between 0 and 1, method distance dM is comparable between
different test sets. It, in fact, represents the percentage of branches that can only be
reconstructed by one method. In this thesis, differences between manual curation and
automatic algorithms are also measured by dM .

Curated trees were processed from automatic methods. Their accuracy is in-
evitablely affected by automatic methods in use. In addition, curation is a subjective
process more or less, which might also make curated trees deviate from the true his-
tory. To objectively measure the quality of automatic methods, we also use percent
duplications pD and average losses pL which are defined as:

pD(M) =
∑m

i=1 D∗
i (M)∑m

i=1 ni − 1
(6.2)

pL(M) =
∑m

i=1 L∗
i (M)∑m

i=1 ni − 1
(6.3)

where D∗
i (M) is the number of duplications inferred from the tree reconstructed by

method M from i-th alignment, and L∗
i (M) is the number of losses. If we accept the

hypothesis that true phylogenies tend to contain fewer duplications and losses, better
methods must correspond to smaller pD and pL. Although this hypothesis might be
violated in a few gene families, the overall trend should still stand.

The two test sets only represent a small part of all Eukaryotic gene families. To in-
vestigate the statistical reliability of our results, we designed a bootstrapping procedure
to calculate the standard deviation of each statistics, pD, pL and dM . In TestSet2, 113
families were resampled with replacement for B times, which forms B sets of families
with each set containing 113 families. Criterion ri was calculated from 113 resampled
families for i-th round of resampling. Mean value µ and SD (Standard Deviation) σ
were then estimated as:

µr =
∑

i ri

B

σr =

√∑
i r

2
i −Bµ2

r

B − 1

A very small σr means that a r estimated from the original 113 families is similar to
the r estimated from all animal families on the condition that these 113 families can
represent all animal families. In most cases, µr is almost identical to r estimated from
the original data, and therefore µr will not be showed. Such calculation can also be
applied to TestSet1. They are not showed as σr on TestSet1 are similar to those on
TestSet2.
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6.4 Accuracy of Tree Building Algorithms

Table 6.2 shows the performance of tree-building algorithms and models. Generally, the
small SD reveals that each criterion is quite stable. Due to the bias between TestSet2
and TestSet1, percent duplication pD significantly differs between the two sets. This,
fortunately, does not affect the evaluation of these algorithms. Between the two test
sets, the Pearson’s correlation coefficient of pD is 0.965, and of pL is 0.970, which means
that the results from the two sets highly agree with each other.

Judged from the topological distance dM to the curated tree CUR, tree MERGE outper-
forms all the other methods on both test sets. On TestSet2, this may be due to the fact
that tree CUR was curated from MERGE, but such an interpretation cannot account for the
good performance on TestSet1 where CUR was curated from NJ-AA-MM instead of MERGE.
The similarity between CUR and MERGE on TestSet1 manifests that human experts also
favoured MERGE even if they started from a less accurate tree. Tree merge algorithm
successfully captures the thinking of a biologist.

Judged from percent duplication pD and average loss pL, MERGE is still the winner.
The number of duplications and losses inferred from this tree is significantly less. The
role of tree merge algorithm is also evident from NJ-NT-dM. Merged from NJ-NT-dN and
NJ-NT-dS, two less accurate trees, this tree is even as accurate as those built by ML

TestSet2 TestSet1

Type dM σ pD σ pL σ dM pD pL

CUR 0.000 0.000 0.249 0.017 0.388 0.029 0.000 0.175 0.494
NJ-NT-HKY4 0.225 0.017 0.313 0.017 0.786 0.042 0.133 0.204 0.630
NJ-AA-WAG4 0.256 0.016 0.322 0.016 0.901 0.050 0.154 0.220 0.756
NJ-NT-dN 0.201 0.011 0.308 0.015 0.796 0.040 0.135 0.211 0.714
NJ-NT-dS 0.527 0.017 0.431 0.014 1.761 0.041 0.464 0.345 1.561
NJ-AA-MM 0.225 0.012 0.308 0.016 0.823 0.042 0.137 0.213 0.740
NJ-AA-Kmr 0.275 0.018 0.333 0.017 0.988 0.065 0.165 0.226 0.790
ME-NT-HKY4 0.200 0.015 0.307 0.017 0.720 0.035 0.131 0.202 0.620
ME-AA-WAG4 0.232 0.014 0.317 0.017 0.858 0.047 0.151 0.217 0.744
PARS-NT 0.203 0.013 - - - - 0.151 - -
PARS-AA 0.181 0.013 0.286 0.016 0.614 0.035 0.150 0.207 0.684
ML-NT-HKY4 0.152 0.017 0.300 0.016 0.676 0.041 0.145 0.206 0.636
ML-NT-HKY2 0.147 0.018 0.301 0.017 0.677 0.041 0.143 0.206 0.639
ML-NT-HKY1 0.172 0.017 0.306 0.016 0.693 0.038 0.143 0.208 0.647
ML-AA-WAG4 0.185 0.015 0.299 0.016 0.705 0.044 0.159 0.213 0.709
NJ-NT-dM 0.165 0.011 0.291 0.016 0.687 0.037 0.121 0.195 0.622
MERGE 0.092 0.015 0.259 0.016 0.457 0.033 0.111 0.178 0.503

Table 6.2: Performance of tree builders. In this table, d is the topological distance between tree
CUR and each other tree. pD is percent duplication and pL the average loss. Standard deviation
σ was calculated from 1000 times of resampling in TestSet2. Both pD and pL are not available
for PARS-NT because it contains unresolved nodes. For pL, the Pearson’s correlation coefficient
between the two sets is 0.970.
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with complex model.
So far as single-method trees are concerned, parsimony and ML methods show their

power. They are usually better than distance-based methods, except in one case where
ME-NT-HKY4, the tree built by FASTME, outperforms all the others on TestSet1. Tree
PARS-AA is the best on TestSet2. But as it was merged from several parsimonious
trees given by protpars, part of its high accuracy should attribute to the tree merge
algorithm. ML methods worked smoothly well on both sets, and on each criterion as
well. The role of applying Γ distribution is revealed but very subtle.

As to distance-based methods, nucleotide model HKY is uniformly better than all
amino acid models. FASTME definitely outperforms standard neighbour-joining, which
is in line with Desper and Gascuel (Desper and Gascuel, 2004). Notably, using complex
evolutionary models at protein level does not guarantee higher accuracy at all. This
confirms the observation by Hollich et al. (Hollich et al., 2005).

Figure 6.2 shows the ‘phylogenies’ of tree builders. ‘Signature’ of different tree
building algorithms are evident: proteins-level methods and nucleotide-level methods
tend to be separated into two classes, while distance-based ones be grouped together.
Similar methods share similar properties. This also implies that tree merge can be more
helpful if trees with different properties are provided; otherwise common flaws shared
by a group of algorithms will never be overcome.

6.5 Discussion

Properties of test data sets, such as divergence of sequences, number of sequences in
a tree, number of available sites in alignments, and heterogeneity of site-specific rates,
predetermine the performance of each tree builder. This has been observed by many
previous studies (Kuhner and Felsenstein, 1994; Hall, 2005; Hollich et al., 2005). Con-
sisting of real data from TreeFam, our test sets represent a small number of families
that date back to the last common ancestor of Eukaryotes. Limited to the size and
characteristics of data, we cannot extensively study how each algorithm performs on
various context. But as our benchmark were carried on real data, the results may be of
more practical importance.

Our work shows that tree merge algorithm is capable of capturing the knowledge of
biologists. It can greatly improve the accuracy of tree reconstruction when the phylogeny
of species is clear. The success of tree merge also manifests that each class of single-
model algorithm is able to build part of correct branches that cannot be reconstructed
by others; otherwise there must be an algorithm that approaches the accuracy of tree
MERGE. As no single-method algorithm can uniformly outperform all the others, it is
always necessary to combine trees with different algorithms if higher accuracy is desired.

On the other hand, tree merge only works well with Eukaryotic gene trees, where du-
plications and losses can be inferred without the interference of LGT. On reconstruction
of species tree or bacterial gene trees, single-method algorithms are the only solution.
Our results suggest that each class of algorithms have their own strength. Although
parsimonious tree based on protein data and ML trees seem better in general, distance-
based method such as ME-NT-HKY4 can still outperform them at times. Even when tree
merge is not applicable, comprehensively investigating trees built from different classes
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of algorithms is still always helpful.
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Figure 6.2: Relationships between tree builders. The top tree was built based on TestSet2, and
the bottom on TestSet1. Following the name of each leaf, the first number is percent duplication
pD and the second average loss pL. To build these two tree, topological distance d between each
pair of tree builders was first calculated. Resultant distance matrix was then fed to NJTREE,
which built the tree by neighbour-joining. Bootstrapping procedure have been described above.
100 resampled trees were finally combined together by CONSENSE in PHYLIP package.
This gave the supporting values on each branch.
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Technical Issues

A.1 NJTREE Software

NJTREE is the core engine of the whole TreeFam database. It realizes almost all
the algorithms described in this thesis, including the cNJ algorithm (Section 3.2) for
both rooted and unrooted constraining trees, rooting and bootstrapping, leaf reord-
ing algorithm (Section 3.5), duplication/loss inference for multifurcated species trees
(Chapter 4), and tree merge algorithm (Chapter 5. It also provides a lot of utilities
facilitating the construction of TreeFam (Chapter 2) and the benchmark done in Chap-
ter 6. In addition, NJTREE incorporates source codes from PHYML (Guindon and
Gascuel, 2003), which makes it capable of utilizing the power of ML methods. To some
extent, most parts of the thesis is describing the priciples behind this software.

NJTREE is efficient. It is much faster than any other neighbour-joining tree builders,
and can calculate max-likelihood distance in a speed not compared by other similar
softwares. Even NJTREE-revised PHYML codes runs 20% faster than the original ones.
In addition, NJTREE comes with a nice graphical user interface (GUI), FLNJTREE,
which is built upon FLTK (fast light-weighted toolkit), a cross-platform widget library.
FLNJTREE can be compiled in both UNIX (including LINUX) and Windows. In
theory, it should also work in Mac OSX, though this has not been tested. Figure A.1
shows a snapshot of FLNJTREE.

A.2 MySQL Structures

TreeFam database is supported on MySQL, probably the most popular open source
database in the world. Except the original PhIGs alignment, all the other data are
stored in the relational database. The structures of TreeFam MySQL schema are very
intuitive. Most the tables can be classified into three groups: tables for describing gene
attributes, tables for recording family information, and tables connecting the two parts.
Table A.1 gives a brief list of key tables in TreeFam database, and Figure A.2 shows
the relations between them. Note that in TreeFam MySQL tables, gene identifiers and
family accessions are directly used as index. This is clearer than using integer ID, but
is ineffiecient from a pure technical angle 1. As efficiency seems not a serious problem

1http://www.informit.com/articles/article.asp?p=377652&seqNum=1

http://www.mysql.com/
http://www.informit.com/articles/article.asp?p=377652&seqNum=1
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at present, we can live with this for the moment. TreeFam MySQL database is open
to public at db.treefam.org:3308. The read-only account is anonymous with empty
password.

A.3 Perl API

It is recommended to connect TreeFam MySQL with perl API, which provides conve-
nient interface for the retrieval of various TreeFam data. TreeFam API also implements
a light-weighted parser for NHX format, a versatile tree plotter and a simple alignment

Figure A.1: Screenshot of FLNJTREE software.
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plotter. Full documentation is available at http://www.treefam.org/api/.

Figure A.2: Schema of TreeFam database. This figure is generated by DBDesigner4.

http://www.treefam.org/api/
http://www.fabforce.net/dbdesigner4/
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Table Description
genes sequence ID, gene name, transcript name, symbol, description and so on
species tax ID, taxonomy name, abbr. name, and common name of species
map genomic locations of transcripts; in UCSC format
pfam Pfam predictions for each sequence
aa seq amino acid sequences
nt seq nucleotide sequences
familyA accessions, symbols and names of TreeFam-A families
familyB basic information on TreeFam-B families
famB2A relation between curated TreeFam-A and original TreeFam-B families
phigs PhIGs accessions of TreeFam-B families
trees phylogenetic trees in NHX format
misc feat symbols and names of B families; curators of A families
misc key descriptions of ‘key’ used in ‘misc feat’ table
aa seed align amino acids multialignment for TreeFam-A seeds in CIGAR format
aa full align full multialignment for both A and B families in CIGAR format
hmmer HMMer scores of matched sequences

Table A.1: Description of key TreeFam MySQL tables. Trivial or obsolete ones are not included.
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