Short-read Alignment with MAQ & BWA

2009-05-01

Wellcome Trust Sanger Institute Heng Li

After getting short reads...

- Alignment against a known reference sequence:
 - ✓ Resequencing
 - SNPs and short indels
 - structural variations (SVs)
 - ✓ ChIP-seq: binding sites
 - ✓ RNA-seq: expression level and alternative splicing
 - ✓ Survey of methylation pattern
- De novo assembly:
 - \checkmark unknown reference genome
 - ✓ transcriptome sequencing
 - \checkmark local assembly for SVs

Contents

- Focus on:
 - \checkmark Alignment to a known reference sequence
 - \checkmark Calling SNPs and short indels from alignment
- Will not cover:
 - \checkmark Procedures to generate read sequences and qualities
 - \checkmark De novo assembly

Alignment

Typical input data for alignment

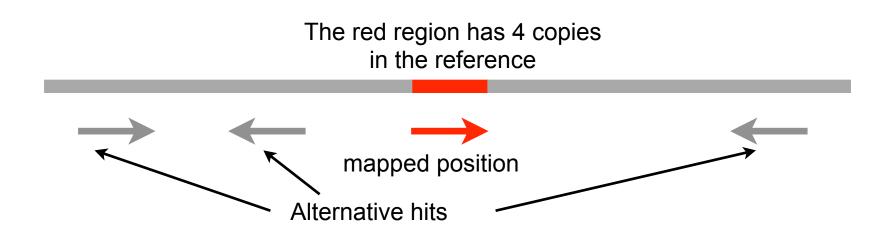
- Illumina/Solexa: 100 million 50+50bp read pairs in a run
- AB/SOLiD: similar in scale and maybe shorter read length
- Roche/454: ~300-500bp reads, 100Mbp a run
 - ✓ Currently a little more expensive in terms of money/base-pair

Difficulties in large-scale alignment

- Speed:
 - ✓ Given a single Illumina run: >200 CPU days using BLAST/BLAT
 - ✓ New algorithms: short-read specific improvements
- Memory:
 - \checkmark Suffix array index requires I2GB for human genome
 - \checkmark Indexing reads or better in-memory index
- Accuracy:
 - ✓ ~20% of human genome are repetitive to 32bp reads
 - ✓ Effectively using paired-end information

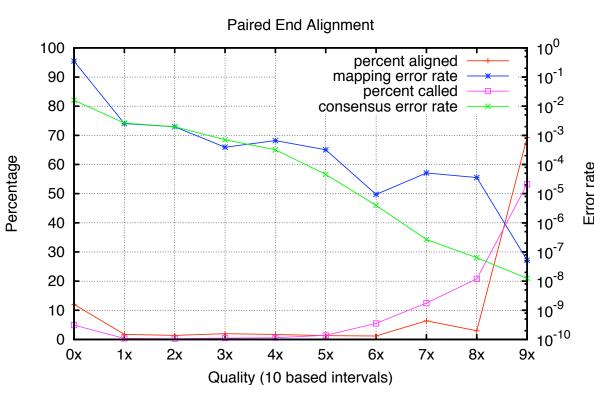
Review of alignment algorithms

- Hashing the reference genome:
 - ✓ Pros: straightforward; easy multi-threading
 - ✓ Cons: large memory
- Hashing read sequences:
 - ✓ Pros: flexible memory footprint
 - ✓ Cons: multi-threading is hard
- Alignment by merge sorting:
 - ✓ Pros: flexible memory
 - ✓ Cons: hard for pairing?
- Indexing genome by BWT:
 - ✓ Pros: fast and relatively small memory footprint
 - \checkmark Cons: not applicable to long reads at the moment

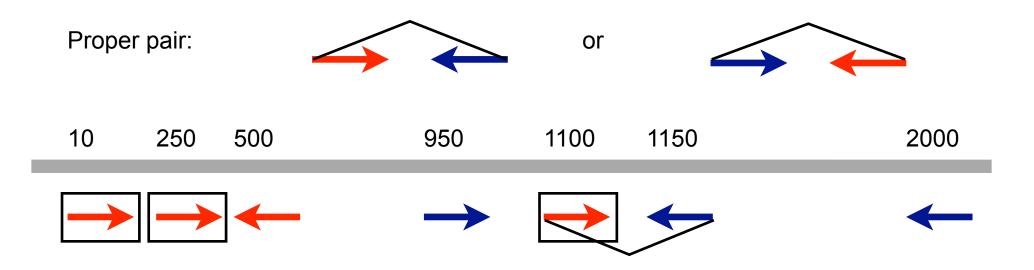

MAQ: basic algorithm

- Index reads and scan the genome.
 - \checkmark Avoid aligning too few reads
- 28bp seed; Eland-like indexing
 - \checkmark Able to find more mismatches beyond the seed
- Guarantee to find 2-mismatch seed hits

Seed templates:


MAQ: random mapping

- Randomly place a read if it has multiple equally best hits
- Advantages:
 - \checkmark tell if a read is mapped
 - ✓ tell if a region has reads mapped (avoid holes due to repeats)


MAQ: mapping quality

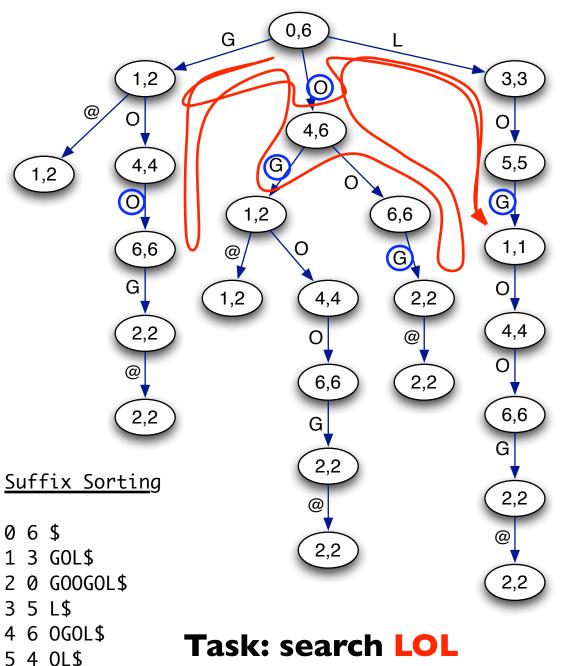
- Mapping quality is the phredscaled probability of the alignment being wrong.
- Discriminate good mappings from bad ones, e.g.:
 - \checkmark repetitive reads
 - ✓ top hit is perfect but there are
 100 I-mismatch hits
 - ✓ top hit is perfect but the second best hit has one Q5 mismatch
- Proved to be effective for SV detections where wrong alignments dominate.

MAQ: PET mapping

- Hit to a read found on the forward strand: keep the position in a 2-element queue
- Hit to a read found on the reverse strand: check the positions in the queue of its mate

MAQ: other features

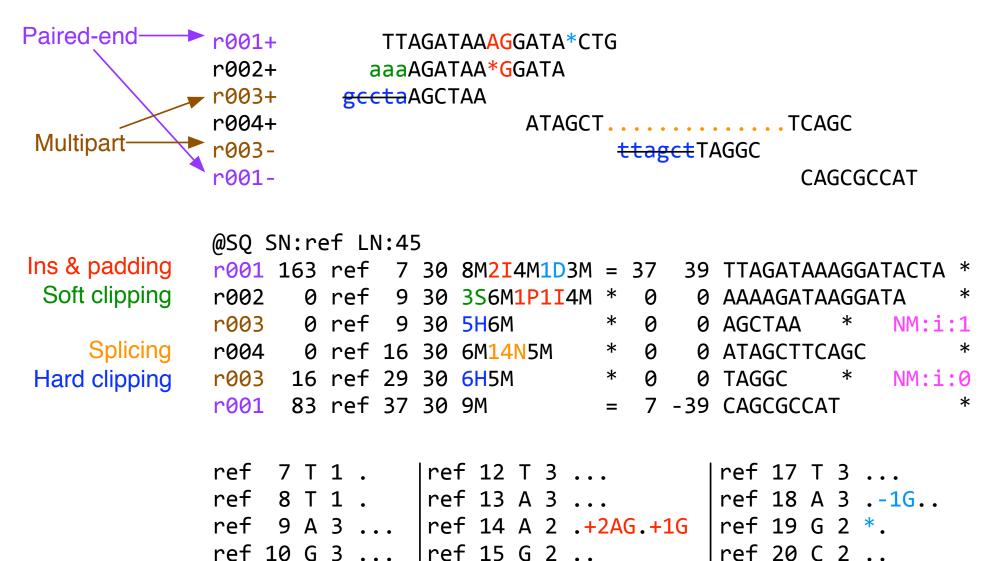
- Gapped alignment for PET
- Adapter trimming
- Partially SOLiD mapping support
 - \checkmark cannot align the first primer base
- Alignment-based decoding for color reads
 - \checkmark correcting color errors after the alignment


MAQ: problems

- Speed: typically ~100 reads/sec against the human genome
 - ✓ 23 CPU days for a good Illumina run
- No gapped alignment for single-end reads
 - \checkmark Not suitable for Helicos reads
 - \checkmark Long reads are more likely to contain short indels

Prefix trie of GOOGOL\$

BWA


- BWT-based indexing of the reference genome
- ~I0X faster than MAQ
- Similar alignment accuracy to MAQ
- Gapped alignment for single-end reads
- SAM output

6 1 00G0L\$

allowing one mismatch

coor 12345678901234 5678901234567890123456789012345 ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

ref 16 A 3 ...

. . .

ref 11 A 3 ...C

Alternative FREE aligners

- cross_match, SSAHA2 and Mosaik:
 - ✓ Pros: 454 and capillary reads; local alignment
 - \checkmark Cons: SSAHA2 is a little slow for short reads
- NovoAlign:
 - \checkmark Pros: most accurate to date
 - \checkmark Cons: relatively large memory; a little slow
- Bowtie and SOAP2:
 - ✓ Pros: fastest (also BWT based)
 - ✓ Cons: less accurate than MAQ; Bowtie for ungapped alignment only
- Tophat: RNA-seq

Recommended alignment procedures

- Long reads: BLAT/SSAHA2/cross_match/Mosaik
- Long reference (e.g. human genome), short reads:
 - ✓ BWA for initial mapping (for speed)
 - ✓ NovoAlign for unmapped/unpaired reads (for accuracy, in particular for detecting structural variations)
 - ✓ Local *de novo* assembly with PE reads for structural variations
- Short reference (e.g. bacterial genome), short reads:
 - ✓ Speed/memory is less critical
 - ✓ De novo assembly + cross_match contigs (to find variants in highly variable regions, but require deep coverage)

Postprocessing of Alignment and Variant Calling

Reference-based assembly

- Task: collect read bases at each reference position.
- The MAQ/SAMtools way (small memory footprint):
 - \checkmark Do alignment in a batch of a few million reads
 - \checkmark Sort alignment based on chromosomal positions
 - \checkmark Merge alignments from multiple batches
 - ✓ Generate assembly on a stream

Consensus calling by MAQ/ SAMtools

- Bayesian consensus caller to calculate the probability of the call being wrong
- Explicitly consider:
 - \checkmark base quality and mapping quality
 - ✓ dependence between errors
- Indel caller:
 - ✓ MAQ: simply count the number of reads supporting indels
 - ✓ SAMtools: redo alignment locally around indels (higher power)

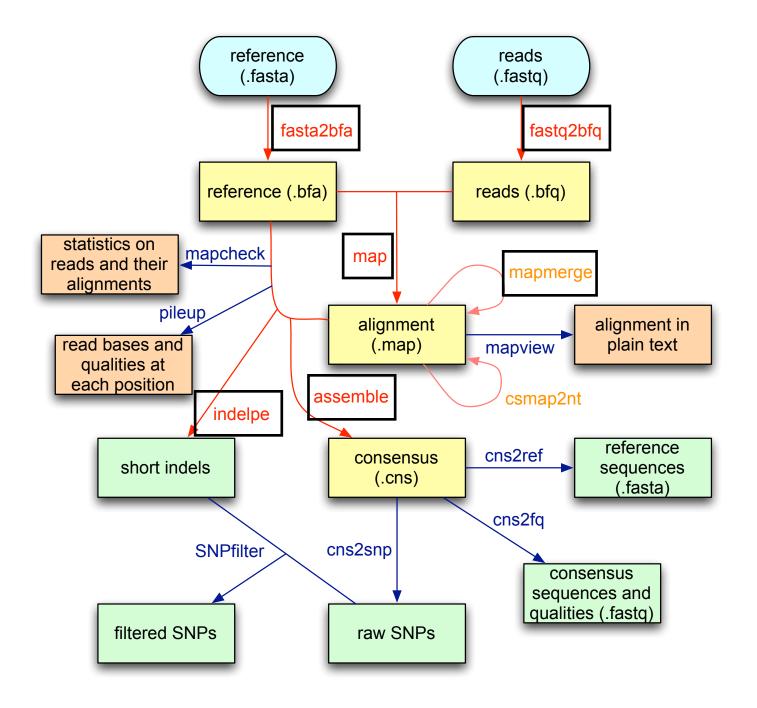
Alternative SNP callers

- Implementing SNP callers is complicated by alignment formats.
- Much fewer SNP callers and most are aligner specific:
 - ✓ Slider (for slider)
 - ✓ SOAPsnp (for soap and soap2)
 - ✓ GigaBase (for Mosaik)
 - ✓ SHORE (for vmatch and genomemapper)

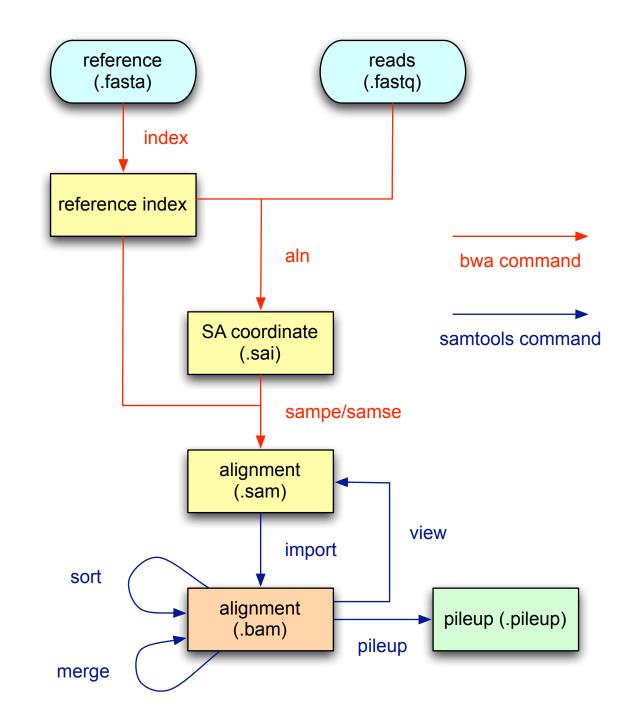
Software for other applications

- ChIP-seq: FindPeaks (actively maintained, open source)
- SV detection: BreakDancer (work for MAQ alignment, http:// genome.wustl.edu/tools/cancer-genomics/)

Alignment viewers


- SAMtools
 - ✓ <u>http://samtools.sourceforge.net</u>
- MAQview
 - ✓ <u>http://maq.sourceforge.net</u>
- MapView
 - ✓ <u>http://evolution.sysu.edu.cn/mapview/</u>
- ► IGV
 - ✓ <u>http://www.broad.mit.edu/igv-beta/</u>

Using MAQ/BWA/ SAMtools


The two pipelines

- MAQ:
 - \checkmark Publication proved
 - $\checkmark \quad \mathsf{More matured}$
- BWA+SAMtools:
 - \checkmark 10X faster for human alignment with similar alignment accuracy
 - \checkmark Gapped alignment for single-end reads
 - \checkmark Improved short indel caller
 - ✓ Bleeding-edge

MAQ Work Flow

BWA/SAMtools Work Flow

MAQ pitfalls: alignment (I)

- Too many reads in a batch
 - ✓ MAQ's memory is linear in the #reads in the alignment
 - ✓ Too many reads make MAQ use too much memory
- Too few reads in a batch
 - ✓ MAQ's speed is similar given 100 reads and 100,000 reads
 - ✓ Recommendation: 2 million reads or 1 million pairs in a batch
- Assertion failure for paired end reads
 - ✓ In PET mapping, i-th read in the first file and i-th in the second file constitute a read pair
 - ✓ Two reads in a pair must have identical read names OR only differ at the tailing "/[12]": read001/1 and read001/2

MAQ pitfalls: alignment (II)

- Wrong '-e' option for long reads:
 - \checkmark -e controls the tolerance of mismatches across the full read
 - \checkmark -n controls the max-mismatches in the 28bp seed
- Improper '-a' option:
 - \checkmark -a sets the maximum insert size
 - \checkmark Excessively small -a leads to more wrong alignments
 - ✓ Recommendation: it is safer to use larger -a, although the resultant mapping quality would be a little conservative.
- Highly inaccurate base qualities:
 - \checkmark Lead to inaccurate mapping quality (though not highly)
 - ✓ Recommendation: calibrate base qualities

Qualities

- base quality
 - \checkmark Solexa quality
 - \checkmark Fastq quality
- mapping quality
- consensus quality
- SNP quality
- see also:
 - ✓ <u>http://en.wikipedia.org/wiki/FASTQ_format</u>
 - ✓ <u>http://maq.sourceforge.net/qual.shtml</u>
 - ✓ <u>http://maq.sourceforge.net/pooled.shtml</u>

BWA pitfalls

- Forget to apply seeding with 'bwa aln -I 32':
 - \checkmark Seeding greatly accelerates BWA at a marginal cost of accuracy.
- Use BWA for 454 reads:
 - \checkmark BWA works but has high false positive rate.

Pitfalls in variant calling

- Unfiltered SNPs:
 - \checkmark The statistical model does not consider all the artifacts.
 - ✓ Run 'maq.pl SNPfilter' is highly recommended.
- Pooled samples:
 - \checkmark Should use 'maq assemble -N' (See also online documentations)
- SNPs with excessive coverage:
 - \checkmark Most likely due to segmental duplications in the sample

Write your own SNP caller

Extended pileup format

[screen 8: bash] — screen — 156×44
01 2044211 2044221 2044231 2044241 2044251 2044261 2044271 2044281 2044291 2044301 2044311 2044321
AGTTCTAAATATAGAAATTGAAACAGCTGTGTTTAGTGCCTTTGTTCA*****ACCCCCTTGCAACAACCTTGAGAACCCCAGGGAATTTGTCAATGTCAGGGAAGGAGCATTTTGTCAGTTACCAAATG

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

CATAG
.AG
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CATAG
aca,ag*****,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ca,ag ^{*****} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A. a,ag****,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A.AG*****
A.AG*****
,,,
AG*****
···· »,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
***** *****
····· 122222122222222222222222222222222
*****ca
*****CA
A C C +****CATAC
***** N

·····································

······································
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

A

•••••••

••••••

```
# simulate reads
./wgsim -N 200000 -1 40 -2 40 ssuisP17_cut.fasta r1.fq r2.fq > var.snp
# MAQ easyrun
./maq.pl easyrun -pa 700 ssuisP17_cut.fasta r1.fq r2.fq
./magindex -ic easyrun/consensus.cns easyrun/all.map
# build BWA index
./bwa index -a is ssuisP17 cut.fasta
# generate suffix array coordinate
./bwa aln ssuisP17 cut.fasta r1.fg > r1.sai
./bwa aln ssuisP17 cut.fasta r2.fg > r2.sai
# pairing
./bwa sampe ssuisP17 cut.fasta r1.sai r2.sai r1.fg r2.fg > pe.bwa.sam
# multiple single-end hits
./bwa samse -n 100 ssuisP17 cut.fasta r1.sai r1.fq > r1.txt
./bwa samse -n 100 ssuisP17_cut.fasta r2.sai r2.fq > r2.txt
# index fasta
./samtools faidx ssuisP17_cut.fasta
# import BWA alignment
./samtools import ssuisP17 cut.fasta.fai pe.bwa.sam pe.bwa.bam
# sort the alignment
./samtools sort pe.bwa.bam pe.srt
# index the alignment
./samtools index pe.srt.bam
# consensus calling
./samtools pileup -cf ssuisP17 cut.fasta pe.srt.bam | gzip > pe.srt.pileup.gz
```

```
# ./maqview -c easyrun/consensus.cns easyrun/all.map
# ./samtools tview pe.srt.bam ssuisP17_cut.fasta
```

Thank You!