Challenges and Solutions in the Analysis of Next Generation Sequence Data

Heng Li

Broad Institute

 $2nd \ CHOP/PENN \ NGS \ Symposium$

Heng Li (Broad Institute)

Chanllenges in NGS data analyses

30 June 2010 1 / 35

About me

- One of the major contributors to the SAM specification
- Key developer of several popular software packages:
 - Short-read alignment: MAQ and BWA
 - Long-read alignment: BWA-SW
 - Variant calling and data processing: SAMtools and Tabix
- Involved in the early development of the 1000 Genomes Project
- Google (US/UK) "heng li" for the slides.

Outline

Overview of the next-generation sequencing

- Messages from the 1000 Genomes Project
- Sequencing machines vs. computers

Quest for standards

3 The SAM-centric data processing

- Making a choice: alignment
- Making a choice: visualization
- Making a choice: SNP/INDEL discovery
- SAM-centric data processing

Outline

Overview of the next-generation sequencing

- Messages from the 1000 Genomes Project
- Sequencing machines vs. computers

Quest for standards

The SAM-centric data processing

- Making a choice: alignment
- Making a choice: visualization
- Making a choice: SNP/INDEL discovery
- SAM-centric data processing

Submitted Illumina data from the 1000 Genomes Project

Illumina sequencing

- $\bullet~5X$ increased throughput in ${<}2$ years
- 4-5Gbp raw sequences per machine day at present

Illumina sequencing

- $\bullet~5X$ increased throughput in ${<}2$ years
- 4-5Gbp raw sequences per machine day at present
- HiSeq: 14Gbp per lane (not formally submitted yet); ${\sim}30X$ mappable data to human per half run

< 🗇 🕨

Current sequencing technologies

	GA IIx	HiSeq	SOLiD4	454FLX
Read length (bp/color)	2x100	2×100	2x50	400
Run time (days)	9.5	8	14	0.4
Mappable per run (Gbp)	40	160	90	0.5
Throughput (Gbp/day)	4.2	20	6.4	1.1

- Machine yield obtained from vendors' website.
- Assuming 90% of raw seqences mappable for GA IIx and HiSeq.
- HiSeq and SOLiD4 sequence two flow cells/slides per run.

Current sequencing technologies

	GA IIx	HiSeq	SOLiD4	454FLX
Read length (bp/color)	2x100	2×100	2x50	400
Run time (days)	9.5	8	14	0.4
Mappable per run (Gbp)	40	160	90	0.5
Throughput (Gbp/day)	4.2	20	6.4	1.1

- Machine yield obtained from vendors' website.
- Assuming 90% of raw seqences mappable for GA IIx and HiSeq.
- HiSeq and SOLiD4 sequence two flow cells/slides per run.

Do computers match sequencing machines in throughput?

Typical NGS workflow

- Image analyses and base calling software are provided by vendors.
- Image are usually analyzed in real time.
- 454 alignment and assembly can be done on intesities.

For image analyses and base calling, an 8-core computer matches HiSeq in throughput.

• • = • • = •

Published general-purpose NGS aligners

Published general-purpose NGS aligners

Published general-purpose NGS aligners

Current sequencing technologies

	GA IIx	HiSeq	SOLiD4	454FLX
Read length (bp/color)	2x100	2×100	2×50	400
Run time (days)	9.5	8	14	0.4
Mappable per run (Gbp)	40	160	90	0.5
Throughput (Gbp/day)	4.2	20	6.4	1.1
Image analysis (Gbp/CPU day)	3	3		
Base calling (Gbp/CPU day)	3	3		
Aln. to human (Gbp/CPU day)	6	6		3

• Machine yield obtained from vendors' website.

- Assuming 90% of raw seqences mappable for GA IIx and HiSeq.
- HiSeq and SOLiD4 sequence two flow cells/slides per run.
- Image analyses done in real-time (on sequencing machines).
- Illumina alignment done by Bowtie/BWA/SOAP2; 454 by BWASW.

A word about Pacific Biosciences (PacBio)

- Polymerase for sequencing
- Single-molecule sequencing
 - less amplification bias
 - DNA methylation (no bisulfite treatment)
- Long reads (In Sequence, 02/10/2009; Eid et al., 2009)
 - ► ~1000bp in average
 - exponentially distributed: a few very long, many short (Sanger and 454: normal distributed)
- Strobe reads oriented fragments of a long DNA
- Relatively high error rate (a year ago, Eid et al., 2009)

• • = • • = •

A word about Pacific Biosciences (PacBio)

- Polymerase for sequencing
- Single-molecule sequencing
 - less amplification bias
 - DNA methylation (no bisulfite treatment)
- Long reads (In Sequence, 02/10/2009; Eid et al., 2009)
 - ► ~1000bp in average
 - exponentially distributed: a few very long, many short (Sanger and 454: normal distributed)
- Strobe reads oriented fragments of a long DNA
- Relatively high error rate (a year ago, Eid et al., 2009)
- Potential for a variety of new applications
- Not an immediate replacement of current technologies

Sequencing machines vs. computers

- At present, a tie.
- In future, sequencing machines may pull ahead.
- Alignment used to be the bottleneck, but base calling is the slowest step now.
 - Base calling: platform dependent and mostly by vendors. (closed)
 - Alignment: community efforts. (open)

Outline

Overview of the next-generation sequencing

- Messages from the 1000 Genomes Project
- Sequencing machines vs. computers

2 Quest for standards

The SAM-centric data processing

- Making a choice: alignment
- Making a choice: visualization
- Making a choice: SNP/INDEL discovery
- SAM-centric data processing

The dilemma of openness

A year ago:

- 14 published aligners, 14 (primitive) alignment formats.
- No generic alignment viewers, no generic variant callers.
- Everyone writes their own pipeline from scratch.

Now (a year after the publication of SAM):

- Most popular aligners generate a single format: SAM.
- 10 SAM supported alignment viewers, 3 generic SNP/indel callers.
- Build pipeline upon high-performance tools as well as upon libraries in C, C++, Java, Perl, Python and Ruby.

The dilemma of openness

A year ago:

- 14 published aligners, 14 (primitive) alignment formats.
- No generic alignment viewers, no generic variant callers.
- Everyone writes their own pipeline from scratch.

Now (a year after the publication of SAM):

- Most popular aligners generate a single format: SAM.
- 10 SAM supported alignment viewers, 3 generic SNP/indel callers.
- Build pipeline upon high-performance tools as well as upon libraries in C, C++, Java, Perl, Python and Ruby.

Image: A mathematical states and a mathem

\sim						
u	uest	tor	star	ıd	arc	IS.

	coor ref	123456789 AGCATGTT	001234 AGATAA**	567890123 *GATAGCTGT	456789 GCTAGT	0123456789012345 AGGCAGTCAGCGCCAT	
Paired-end Multipart	r001+ r002+ r003+ r004+ r003- r001-	TT/ aaa/ gccta /	AGATAA <mark>AG</mark> AGATAA*C AGCTAA	GATA*CTG GATA ATAGCT	: taget T/	AGGC CAGCGCCAT	
Ins & padding Soft clipping Splicing Hard clipping	@SQ SN r001 1 r002 r003 r004 r003 r001	:ref LN:4 63 ref 7 0 ref 9 0 ref 9 0 ref 16 16 ref 29 83 ref 37	30 8M21 30 3S6M 30 5H6M 30 6M14 30 6H5M 30 9M	I4M1D3M = 11P1I4M * 1 * 1N5M * 1 *	37 39 0 0 0 0 0 0 0 0 7 -39	TTAGATAAAGGATACT AAAAGATAAGGATA AGCTAA * NM: ATAGCTTCAGC TAGGC * NM: CAGCGCCAT	A * * i:1 * i:0 *
	ref 7 ref 8 ref 9 ref 10 ref 11	T 1 . T 1 . A 3 G 3 A 3C	ref 12 ref 13 ref 14 ref 15 ref 16	T 3 A 3 A 2 .+2A0 G 2 A 3	G.+1G.	ref 17 T 3 ref 18 A 31G. ref 19 G 2 *. ref 20 C 2 	

107 107 15 F 15 F

Features

- Flexibility:
 - Variable read lengths, from short reads to BACs.
 - Indels, splicing, clipping and multi-part alignment.
 - User defined or aligner specific information.
- Efficiency:
 - Compact in file size (one byte per raw base).
 - Minimal memory requirement.
 - Random access.
- Open alignment files over FTP/HTTP.
 - Interested in a few genes, but cannot afford 40TB alignments.
- Matured and stable.

Features

- Flexibility:
 - Variable read lengths, from short reads to BACs.
 - Indels, splicing, clipping and multi-part alignment.
 - User defined or aligner specific information.
- Efficiency:
 - Compact in file size (one byte per raw base).
 - Minimal memory requirement.
 - Random access.
- Open alignment files over FTP/HTTP.
 - Interested in a few genes, but cannot afford 40TB alignments.
- Matured and stable.

The SAM/BAM format is the standard.

Outline

Overview of the next-generation sequencing

- Messages from the 1000 Genomes Project
- Sequencing machines vs. computers

Quest for standards

The SAM-centric data processing

- Making a choice: alignment
- Making a choice: visualization
- Making a choice: SNP/INDEL discovery
- SAM-centric data processing

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

<ロ> (日) (日) (日) (日) (日)

Heng Li (Broad Institute)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

э

イロト イポト イヨト イヨト

Not all aligners are equal.

-

Not all aligners are equal.

Systematic errors are more dangerous.

Systematic errors are more dangerous.

Systematic errors are more dangerous.

Choose an alignment algorithm

Sources of alignment errors:

- Repeats and known segmental duplications
- Approximations and heuristics
- Short indels
- Incompete reference genomes
- Typical alignment error rate: <1%.

Choose an alignment algorithm

Sources of alignment errors:

- Repeats and known segmental duplications aligners know this
- Approximations and heuristics getting better
- Short indels getting better
- Incompete reference genomes increasingly hurting
- Typical alignment error rate: <1%.

Choose an alignment algorithm

Sources of alignment errors:

- Repeats and known segmental duplications aligners know this
- Approximations and heuristics getting better
- Short indels getting better
- Incompete reference genomes increasingly hurting
- Typical alignment error rate: <1%.

The baseline:

Don't let the alignment errors be dominant.

Depth based CNV discovery and study of highly expressed genes:

- Other sources of errors/variation dominate
- Use a fast aligner (e.g. Bowtie/SOAP2)

SNP/INDEL discovery and study of weakly expressed genes:

- 10–20% of short variants in human are indels.
- Use a gapped and accurate aligner (e.g. bwa/novoalign).

SV discovery; somatic mutations

- Tiny alignment errors are hurting.
- Combine distinct algorithms (e.g. bwa+mosaik/bwasw)

Depth based CNV discovery and study of highly expressed genes:

- Other sources of errors/variation dominate
- Use a fast aligner (e.g. Bowtie/SOAP2)

SNP/INDEL discovery and study of weakly expressed genes:

- 10–20% of short variants in human are indels.
- Use a gapped and accurate aligner (e.g. bwa/novoalign).

SV discovery; somatic mutations

- Tiny alignment errors are hurting.
- Combine distinct algorithms (e.g. bwa+mosaik/bwasw)

Depth based CNV discovery and study of highly expressed genes:

- Other sources of errors/variation dominate
- Use a fast aligner (e.g. Bowtie/SOAP2)

SNP/INDEL discovery and study of weakly expressed genes:

- 10-20% of short variants in human are indels.
- Use a gapped and accurate aligner (e.g. bwa/novoalign).
- All high-profile resequencing projects use gapped aligners.

SV discovery; somatic mutations

- Tiny alignment errors are hurting.
- Combine distinct algorithms (e.g. bwa+mosaik/bwasw)

Depth based CNV discovery and study of highly expressed genes:

- Other sources of errors/variation dominate
- Use a fast aligner (e.g. Bowtie/SOAP2)

SNP/INDEL discovery and study of weakly expressed genes:

- 10-20% of short variants in human are indels.
- Use a gapped and accurate aligner (e.g. bwa/novoalign).
- All high-profile resequencing projects use gapped aligners.

SV discovery; somatic mutations

- Tiny alignment errors are hurting.
- Combine distinct algorithms (e.g. bwa+mosaik/bwasw)

(日) (同) (三) (三)

Visualization

Base-pair resolution:

- ► IGV: highly tuned for SNP/SV discovery
- SAMtools tview: fast over slow network
- ► Tablet: Support many alignment/assembly formats; elegant interface

Low resolution:

- SeqMonk: highly tuned for ChIP/RNA-seq
- Web based:
 - UCSC: BAM support plus much more
 - GBrowse: BAM support

Types of SNP calling

- Single sample: samtools, GATK, QCall and VarScan
- Pooled sample: Syzygy
- Multi-sample, without LD: GATK and QCall
- Multi-sample, with LD: GATK+Beagle and QCall
- Contrast samples (e.g. tumor vs. normal): ?

Jse samtools' pileup to write your own variant caller.

Types of SNP calling

- Single sample: samtools, GATK, QCall and VarScan
- Pooled sample: Syzygy
- Multi-sample, without LD: GATK and QCall
- Multi-sample, with LD: GATK+Beagle and QCall
- Contrast samples (e.g. tumor vs. normal): ?

Use samtools' pileup to write your own variant caller.

Artefacts: strand bias

In or the GATK website

Artefacts: excessive coverage

from the GATK website

Other factors considered in filtering

- Allele balance: #ref-alleles/#snp-alleles
- Mapping quality: the accessibility of the region
- Clustered SNPs: sign of paralogous mapping
- Length of the longest homopolymer run
- Break of diploidity: paralogous mapping

Other factors considered in filtering

- Allele balance: #ref-alleles/#snp-alleles
- Mapping quality: the accessibility of the region
- Clustered SNPs: sign of paralogous mapping
- Length of the longest homopolymer run
- Break of diploidity: paralogous mapping

Towards high accuracy SNP calling:

- Necessary for somatic mutations.
- A good alignment viewer (e.g. IGV and tview) is essential SAM only!

2044201	2044211	2044221	2044231	2044241	2044251		2044261	2044271	2044281	204429	1 204
44341ATGCTATTCAGTT	CTAAATATA	GAAATTGAAAO	AGCTGTGTT	TAGTGCCTTT	GTTCA	ACCCCCT	TGCAACAA	CCTTGAGAAC	CCCAGGGAAT	TTGTCAAT	GTCAGGO
<u>.</u>					****	•					
C						•					
					****	*					
					CATA	G					
			A	<mark>G</mark>	****	*.A			a		
					CATA	G					
					CATA	G					
G				a	ca.aq****	*					
					ca.aa****	•					
				A.	a.aa****	•					
					A.AG****	•					
					A.AG****	•					
				.TTA.	AG****						
					AG****						
					****	•		C.			
						•					
					****	•					
					****	*					
*****					****	****			,,,,,,,,,,,,	**	,,,,,,,,
****					****	+CA				•••	
•••••••				<u> </u>		RCATAC					
••••••						*	N				3 3 3
											,,
		,,	********		,,,,,	_,,,,,,,,,	••••••		• • • • • • • • • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* * * * ⁶
		,,		• • • • • • • • • • • •	,,,,,	_,,,,,,,,					
				, , , , , , , , , , , , , , , , , , , ,	,,,,,	<u>.</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

								,,,,,,,,,,,,,	, , , , , , , , , , , ,		
*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,									
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,							, , , , , , ,		*****
	A										
							.▶ ▲⊡	▶ ◀ ≣ ▶	< ≣ ►	jili v	$\mathcal{O} \land \mathcal{O}$

INDEL calling

Problem:

- Reads are independent in alignment, but reads mapped to the same locus are correlated.
- Naive indel callers would not work well.

Solution:

- Sophisticated indel callers all do realignment implicitly (e.g. Dindel and samtools).
- Explicit realignment (e.g. SRMA and GATK).

INDEL calling

Problem:

- Reads are indenpendent in alignment, but reads mapped to the same locus are correlated.
- Naive indel callers would not work well.

Solution:

- Sophisticated indel callers all do realignment implicitly (e.g. Dindel and samtools).
- Explicit realignment (e.g. SRMA and GATK).

э

イロト イポト イヨト イヨト

The SAM-centric data processing

- Top tools for all applications.
- Vendor supports (Illumina, AB, Complete Genomics and potentially PacBio).
- Efficiency: processing 40X human resequencing data in a week (\sim 30 CPU days) with 500GB disk space.

The SAM-centric data processing

- Top tools for all applications.
- Vendor supports (Illumina, AB, Complete Genomics and potentially PacBio).
- Efficiency: processing 40X human resequencing data in a week (~30 CPU days) with 500GB disk space.
- Following the best practices, small labs can afford analyzing deep human resequencing data.
- Analyzing data of smaller scale is even easier.

- A sequencing machine can produce up to 20G base pairs per day.
- Data processing is keeping the pace with the increasing throughput of sequence machines.
- The SAM/BAM format is the pivot of data processing. Adopted by most major sequencing centers.
- Following the best practices, small labs can handle data from the latest sequencing machines.

Acknowledgements

- 1000 Genomes Project analyses group
- Bob Handsaker and Richard Durbin
- Tim Fennel, Mark Depristo and the GSA group at Broad
- SAMtools/Picard users
- Altshuler/Daly lab and Reich lab
- Xiaowu Gai

Thank You

2

イロト イヨト イヨト イヨト