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Chapter 1

Duplicate Rate

1.1 Amplicon duplicates

Let N be the number of distinct segments (or seeds) before the amplification and M be the
total number of amplicons in the library. For seed i (i = 1, . . . , N), let ki be the number
of amplicons in the library and ki is drawn from Poinsson distribution Po(λ). When N is
sufficiently large, we have:

M =

N∑
i=1

ki = N

∞∑
k=0

kpk = Nλ

where pk = e−λλk/k!.
At the sequencing step, we sample m amplicons from the library. On the condition that:

m�M (1.1)

we can regard this procedure as sampling with replacement. For seed i, let:

Xi =

{
1 seed i has been sampled at least once
0 otherwise

and then:

EXi = Pr{Xi = 1} = 1−
(

1− ki
M

)m
' 1− e−kim/M

Let:

Z =

N∑
i=1

Xi

be the number of seeds sampled from the library. The fraction of duplicates d is:

d = 1− E(Z)

m

' 1− N

m

∞∑
k=0

(
1− e−km/M

)
pk

= 1− N

m
+
Ne−λ

m

∑
k

1

k!

(
λe−m/M

)k
' 1− N

m

[
1− e−λ · eλ(1−m/M)

]
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4 CHAPTER 1. DUPLICATE RATE

i.e.

d ' 1− N

m

(
1− e−m/N

)
(1.2)

irrelevant of λ. In addition, when m/N is sufficiently small:

d ≈ m

2N
(1.3)

This deduction assumes that i) ki � M which should almost always stand; ii) m � M
which should largely stand because otherwise the fraction of duplicates will far more than
half given λ ∼ 1000 and iii) ki is drawn from a Poisson distribution.

The basic message is that to reduce PCR duplicates, we should either increase the original
pool of distinct molecules before amplification or reduce the number of reads sequenced from
the library. Reducing PCR cycles, however, plays little role.

1.2 Alignment duplicates

For simplicity, we assume a read is as short as a single base pair. For m read pairs, define
an indicator function:

Yij =

{
1 if at least one read pair is mapped to (i, j)
0 otherwise

Let {pk} be the distribution of insert size. Then:

EYij = Pr{Yij = 1} = 1−
[
1− pj−i

L− (j − i)

]m
' 1− e−pj−i·m/[L−(j−i)]

where L is the length of the reference. The fraction of random coincidence is:

d′ = 1− 1

m

L∑
i=1

L∑
j=i

EYij

' 1− 1

m

L∑
i=1

L∑
j=i

(
1− e−pj−i·m/(L−(j−i))

)
= 1− 1

m

L−1∑
k=0

(L− k)
[
1− e−pkm/(L−k)

]
On the condition that L is sufficient large and:

m� L (1.4)

d′ ' m

2

L−1∑
k=0

p2k
L− k

(1.5)

We can calculate/approximate Equation 1.5 for two types of distributions. Firstly, if pk
is evenly distributed between [k0, k0 + k1], d′ ' m

2k1L
. Secondly, assume k is drawn from

N(µ, σ) with σ � 1:

pk =
1√
2πσ

∫ k+1

k

e−
(x−µ)2

2σ2 dx ' 1√
2πσ

e−
(k−µ)2

2σ2
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If p0 � 1, µ� L and L� 1:

d′ ' m

4πσ2

∫ 1

0

1

1− x
· e−

(Lx−µ)2

σ2 dx

' m

4πσ2

∫ ∞
−∞

e
− (x−µ/L)2

(σ/L)2 dx

=
m

4πσ2
·
√

2π ·
√

2σ

L

=
m

2
√
πσL
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Chapter 2

Base Alignment Quality (BAQ)

Let the reference sequence be x = r1 . . . rL. We can use a profile HMM to simulate how a
read y = ˆc1 . . . cl$ with quality z = q1 . . . ql is generated (or sequenced) from the reference,
where ˆ stands for the start of the read sequence and $ for the end.

Figure 2.1: A profile HMM for generating sequence reads from a reference sequence, where L is the
length of the reference sequence, M states stand for alignment matches, I for alignment insertions
to the reference and D states for deletions.

The topology of the profile HMM is given in Fig 2.1. Let (M, I,D, S) = (0, 1, 2, 3). The
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8 CHAPTER 2. BASE ALIGNMENT QUALITY (BAQ)

transition matrix between different types of states is

A = (aij)4×4 =


(1− 2α)(1− s) α(1− s) α(1− s) s
(1− β)(1− s) β(1− s) 0 s

1− β 0 β 0
(1− α)/L α/L 0 0


where α is the gap open probability, β is the gap extension probability and s = 1/(2l)
with l being the average length of a read. As to emission probabilities, P (ci|Dk) = 1,
P (ˆ|S) = P ($|S) = 1, P (ci|Ik) = 0.25 and

P (bi|Mk) = eki =

{
1− 10−qi/10 if rk = bi
10−qi/10/3 otherwise

The forward-backward algorithm1 is as follows:

fS(0) = 1

fMk
(1) = ek1 · a30

fIk(1) = 0.25 · a31
fMk

(i) = eki ·
[
a00fMk−1

(i− 1) + a10fIk−1
(i− 1) + a20fDk−1

(i− 1)
]

fIk(i) = 0.25 ·
[
a01fMk

(i− 1) + a11fIk(i− 1)
]

fDk(i) = a02fMk−1
(i) + a22fDk−1

(i)

fS(l + 1) =

L∑
k=1

a03fMk
(l) + a13fIk(l)

bS(l + 1) = 1

bMk
(l) = a03

bIk(l) = a13

bMk
(i) = ek+1,i+1a00bMk+1

(i+ 1) + a01bIk(i+ 1)/4 + a02bDk+1
(i)

bIk(i) = ek+1,i+1a10bMk+1
(i+ 1) + a11bIk(i+ 1)/4

bDk(i) = (1− δi1) ·
[
ek+1,i+1a20bMk+1

(i+ 1) + a22bDk+1
(i)
]

bS(0) =

L∑
k=1

ek1a30bMk
(1) + a31bIk(1)/4

and the likelihood of data is P (y) = fS(L+ 1) = bS(0)2. The posterior probability of a read
base ci being matching state k̃ (M- or I-typed) is fk̃(i)bk̃(i)/P (y).

1We may adopt a banded forward-backward approximation to reduce the time complexity. We may also
normalize fk̃(i) for each i to avoid floating point underflow.

2Evaluating if fS(L + 1) = bS(0) helps to check the correctness of the formulae and the implementation.



Chapter 3

Modeling Sequencing Errors

3.1 The revised MAQ model

3.1.1 General formulae

Firstly it is easy to prove that for any 0 ≤ βnk < 1 (0 ≤ k ≤ n),

n∑
k=0

(1− βnk)

k−1∏
l=0

βnl = 1−
n∏
k=0

βnk

where we regard that
∏−1
i=0 βni = 1. In particular, when ∃k ∈ [0, n] satisfies βnk = 0, we

have:
n∑
k=0

(1− βnk)

k−1∏
i=0

βni = 1

If we further define:

αnk = (1− βnk)

k−1∏
i=0

βni (3.1)

on the condition that some βnk = 0, we have:

n∑
k=0

αnk = 1

βnk = 1− αnk

1−
∑k−1
i=0 αni

=
1−

∑k
i=0 αni

1−
∑k−1
i=0 αni

=

∑n
i=k+1 αni∑n
i=k αni

In the context of error modeling, if we define:

βnk ,

{
Pr{at least k + 1 errors|at least k errors out of n bases} (k > 0)
Pr{at least 1 error out of n bases} (k = 0)

we have βnn = 0, and

γnk ,
k−1∏
l=0

βnl = Pr{at least k errors out of n bases}

then
αnk = (1− βnk)γnk = Pr{exactly k errors in n bases}

9



10 CHAPTER 3. MODELING SEQUENCING ERRORS

3.1.2 Modeling sequencing errors

Given a uniform error rate ε and independent errors, let

ᾱnk(ε) =

(
n

k

)
εk(1− ε)n−k

and

β̄nk(ε) =

∑n
i=k+1 ᾱni(ε)∑n
i=k ᾱni(ε)

we can calculate that the probability of seeing at least k errors is

γ̄nk(ε) =

k−1∏
l=0

β̄nk(ε)

When errors are dependent, the true βnk will be larger than β̄nk. A possible choice of
modeling this is to let

βnk = β̄fknk

where 0 < fk ≤ 1 models the dependency for k-th error. The probability of seeing at least k
errors is thus

γnk(ε) =

k−1∏
l=0

β̄flnl(ε)

For non-uniform errors ε1 ≤ ε2 ≤ · · · ≤ εn, we may approximate γnk(~ε) as

γnk(~ε) =

k−1∏
l=0

β̄flnl(εl+1)

3.1.3 Practical calculation

We consider diploid samples only. Let g ∈ {0, 1, 2} be the number of reference alleles. Suppose
there are k reference alleles whose base error rates are ε1 ≤ · · · ≤ εk, and there are n − k
alternate alleles whose base error rates are ε′1 ≤ · · · ≤ ε′n−k. We calculate

P (D|0) = γnk(~ε) =

k−1∏
l=0

β̄flnl(εl+1)

P (D|2) = γnk(~ε′) =

n−k−1∏
l=0

β̄flnl(ε
′
l+1)

and

P (D|1) =
1

2n

(
n

k

)
where fl = 0.97ηκl−1 + 0.03 with κl being the rank of base l among the same type of bases
on the same strand, ordered by error rate. For sequencing data, error rates are usually
discretized. We may precompute β̄nk(ε) for sufficiently large n1 and all possible discretized
ε. Calculating the likelihood of the data is trivial.

1SAMtools precomputes a table for n ≤ 255. Given higher coverage, it randomly samples 255 reads.
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3.1.4 The original MAQ model

The original MAQ models the likelihood of data by

αnk(ε) = (1− β̄fknk)

k−1∏
i=0

β̄fini

instead of γnk(ε). For non-uniform errors,

αnk(~ε) = cnk(ε̄) ·
k−1∏
i=0

εfii+1

where

log ε̄ =

∑k−1
i=0 fi log εi+1∑k−1

i=0 fi

and

cnk(ε̄) ,
[
1− β̄fknk(ε̄)

] k−1∏
i=0

[
β̄ni(ε̄)

ε̄

]fi
The major problem with the original MAQ model is that for ε close to 0.5 and large n,

the chance of seeing no errors may be so small that it is even smaller than the chance of
seeing all errors (i.e. αn0 < αnn). In this case, the model prefers seeing all errors, which
is counterintuitive. The revised model uses the accumulative probability γnk and does not
have this problem. For small ε and n, the original and the revised MAQ models seem to have
similar performance.
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Chapter 4

Modeling Multiple Individuals

4.1 Notations

Suppose there are N sites from n individuals with i-th individual having mi ploids. Let
M =

∑
imi be the total number of chromosomes. Let D = ( ~D1, . . . , ~DN )T be the data

matrix with vector ~Da = (Da1, . . . , Dan) representing the alignment data for each individual

at site a. Similary, let G = (~Ga, . . . , ~GN )T and ~Ga = (Ga1, . . . , Gan) be the true genotypes,
where 0 ≤ Gai ≤ mi equals the number of reference alleles 1. Define

Xa = Xa(~Ga) ,
∑
i

Gai (4.1)

to be the number of reference alleles at site a and X = (X1, . . . , XN )T. Also define Φ =
(φ0, . . . , φM ) as the allele frequency spectrum (AFS) with

∑
k φk = 1.

For convenience, we may drop the position subscript a when it is unambiguous in the
context that we are looking at one locus. Also define

P (Di|gi) , Pr{Di|Gi = gi} (4.2)

to be the likelihood of the data for individual i when the underlying genotype is known.
P (Di|gi) is calculated in Section 4.4. And define

P (gi|φ) ,

(
mi

gi

)
φgi(1− φ)mi−gi (4.3)

to be the probability of a genotype under the Hardy-Weinberg equilibrium (HWE), when the
site allele frequency is φ.

4.2 Estimating AFS

4.2.1 The EM procedure

We aim to find Φ that maximizes P (D|Φ) by EM. Suppose at the t-th iteration the estimate
is Φt. We have

log Pr{D,X = x|Φ} = log Pr{D|X = x}Pr{X = x|Φ} = C +
∑
a

log φxa

1If we take the ancestral sequence as the reference, the non-reference allele will be the derived allele.

13



14 CHAPTER 4. MODELING MULTIPLE INDIVIDUALS

where C is not a function of {φk}. The EM Q function is2

Q(Φ|Φt) =
∑
x

Pr{X = x|D,Φt} log Pr{D,X = x|Φ}

= C +
∑
x

∏
a

Pr{Xa = xa| ~Da,Φt}
∑
b

log φxb

= C +

N∑
a=1

M∑
xa=0

Pr{Xa = xa| ~Da,Φt} log φxa

Requiring ∂φk(Q− λ
∑
l φl) = 0 leads to

1

φk

∑
a

Pr{Xa = k| ~Da,Φt} − λ = 0

from which λ can be calculated as:

λ =
∑
k

∑
a

Pr{Xa = k| ~Da,Φt} = N

and thus at the (t+ 1) iteration:

φ
(t+1)
k =

1

N

∑
a

Pr{Xa = k| ~Da,Φt} (4.4)

where Pr{Xa = k| ~Da,Φt} is calculated as follows.

4.2.2 The distribution of site reference allele count

Firstly, as we are only looking at a site from now on, we drop subscript a for convenience.
Without proof3, we note that (

M

k

)
≡
∑
~g

δk,sn(~g)
∏
i

(
mi

gi

)
where

sj(~g) ,
j∑
i=1

gi

and δkl = 1 if k = l and 0 otherwise. The probability of sampling ~g conditional on
∑
i gi = k

is δk,sn(~g)
∏
i

(
mi
gi

)/(
M
k

)
. With this preparation, we can calculate4

Pr{ ~D|X = k} =
∑
~g

Pr{ ~D, ~G = ~g|X = k}

=
∑
~g

δk,sn(~g) Pr{ ~D|~G = ~g}Pr{~G = ~g|X = k}

=
∑
~g

δk,sn(~g)
∏
i

P (Di|gi) ·
∏
j

(
mj
gj

)(
M
k

)
=

1(
M
k

) ∑
~g

δk,sn(~g)
∏
i

(
mi

gi

)
P (Di|gi)

2We assume site independency in the following.
3Supposedly, this can be proved by polynomial expansion. Wiki gives a simplified version of this formula

as generalized Vandermonde’s identity.
4The derivation below does not assume Hardy-Weinberg equilibrium.

http://en.wikipedia.org/wiki/Vandermonde's_identity#Generalized_Vandermonde.27s_identity
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where P (Di|gi) , Pr{Di|Gi = gi} is the likelihood of data when the underlying genotype is

known. To calculate Pr{ ~D|X = k}, we define

zjk ,
m1∑
g1=0

· · ·
mj∑
gj=0

j∏
i=1

(
mi

gi

)
P (Di|gi)

for 0 ≤ k ≤
∑j
i=1mi and 0 otherwise. It can be calculated iteratively with5

zjk =

mj∑
gj=0

zj−1,k−gj ·
(
mj

gj

)
P (Dj |gj) (4.5)

with z00 = 1. Thus

Pr{ ~D|X = k} =
znk(
M
k

)
and

Pr{X = k| ~D,Φ} =
φk Pr{ ~D|X = k}∑
l φl Pr{ ~D|X = l}

=
φkznk/

(
M
k

)∑
l φlznl/

(
M
l

) (4.6)

4.2.3 Numerical stability

Numerical computation of Eq. (4.5) may lead to floating point underflow for large n. To

avoid this, let yjk = zjk/
(
Mj

k

)
, where Mj =

∑j
i=0mi. Eq. (4.5) becomes

yjk =

(
mj−1∏
l=0

k − l
Mj−1 − l

)
·
mj∑
gj=0

mj−1∏
l=gj

Mj−1 − k + l + 1

k − l

 · yj−1,k−gj · (mj

gj

)
P (Dj |gj)

In case of diploid samples,

yjk =
1

2j(2j − 1)

[
(2j − k)(2j − k − 1) · yj−1,kP (Dj |〈aa〉) + 2k(2j − k) · yj−1,k−1P (Dj |〈Aa〉)

+k(k − 1) · yj−1,k−2P (Dj |〈AA〉)
]

However, this is not good enough. yjk still decreases exponentially with increasing j. To
solve this issue, we rescale yjk for each j. Define

ỹjk =
yjk∏j
i=1 ti

where tj is chosen such that
∑
l ỹjl = 1. The posterior is

Pr{X = k| ~D,Φ} =
φkỹnk∑
l φlỹnl

It should be noted that P (Di|gi) can also be rescaled without affecting the calculation of
the posterior. Furthermore, in the {ỹjk} matrix, most of cells should be close to zero.
Computation of ỹnk can be carried in a band instead of in a triangle. For large n, this may
considerably reduce computing time.

5To make it explicit, for diploid samples, if A is the reference allele:

zjk = zj−1,kP (Dj |〈aa〉) + 2zj−1,k−1P (Dj |〈Aa〉) + zj−1,k−2P (Dj |〈AA〉)
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4.2.4 The initial AFS

The EM procedure garantees that Pr{D|Φ} monotomically increases with each iteration and
converges to a local optima. However, if we start this iteration from a bad initial AFS, we
may need many iterations; the iteration is also more likely to be trapped by a local optima.
Here we give several AFS on different conditions under the infinite-site Wright-Fisher model.

Let φ′k be the probability of seeing k non-reference alleles out of M chromosomes. The
frequency of reference alleles φk equals φ′M−k.

If we take the ancestral sequence as the reference, the standard model gives φ′k = θ/k
and φ′0 = 1 −

∑
k φ
′
k. When we do not know if the reference allele is ancestral, the same

conclusion still stands. To see this, for k > 0:

φ′k =
M + 1− k
M + 1

(
θ

k
+

θ

M + 1− k

)
=
θ

k

and for k = 0:

φ′k = 1−
M+1∑
k=1

θ

k
+

θ

M + 1
= 1−

M∑
k=1

θ

k

where the first term corresponds to the case wherein the reference is ancestral and the second
to the case wherein the reference is derived.

Another useful AFS is the derived allele frequency spectrum on the condition of loci being
discovered from two chromosomes. Under the Wright-Fisher model, it is:

φ′k =
2(M + 1− k)

(M + 1)(M + 2)

A third AFS is the derived allele frequency spectrum on the condition of knowing one
derived allele from a chromosome. It is a flat distribution

φ′k =
1

M + 1

4.2.5 Estimating site allele frequency

Here we aim to find φ that maximises Pr{ ~D|φ}. We have:

log Pr{ ~D, ~G = ~g|φ} = log
∏
i

P (Di|gi)P (gi|φ) = C +
∑
i

logP (gi|φ)

Given an estimate φt at the t-th iteration, the Q(φ|φt) function of EM is6:

Q(φ|φt) =
∑
~g

Pr{~G = ~g| ~D, φt} log Pr{ ~D, ~G = ~g|φ}

= C +
∑
~gi

∏
i

Pr{Gi = gi|Di, φt}
∑
j

logP (gj |φ)

= C +

n∑
i=1

mi∑
gi=0

Pr{Gi = gi|Di, φt} logP (gi|φ)

= C +
∑
i

∑
gi

Pr{Gi = gi|Di, φt} logi

(
mi

gi

)
φgi(1− φ)mi−gi

= C ′ +
∑
i

∑
gi

Pr{Gi = gi|Di, φt}
[
gi log φ+ (mi − gi) log(1− φ)

]
6We assume Hardy-Weinberg equilibrium in the derivation.
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Requiring ∂φQ
∣∣∣
φ=φt+1

= 0 gives:

1

φt+1(1− φt+1)

∑
i

∑
gi

Pr{Gi = gi|Di, φt}(gi −miφt+1) = 0

Thus

φt+1 =
1∑
jmj

∑
i

∑
gi

gi Pr{Gi = gi|Di, φt} =
1

M

∑
i

∑
gi
giP (Di|gi)P (gi|φt)∑
gi
P (Di|gi)P (gi|φt)

(4.7)

which is the EM estimate at the (t + 1)-th iteration and also the expected reference allele
frequency.

4.2.6 Joint distribution of allele counts for 2 samples

Suppose at a locus we have two data sets ~D′ and ~D′′, with n′ samples m′ haplotypes and
n′′ samples and m′′ haplotypes, respectively. Let n = n′ + n′′ and m = m′ + m′′ and
~D = ~D′⊕ ~D′′ be the joint of the two data sets. In addition, let X ′ =

∑
i′ G
′
i′ , X

′′ =
∑
i′′ G

′′
i′′

and X = X ′ +X ′′. We have

Pr{ ~D′|X ′ = k′} =
z′n′k′(
M ′

k′

)
Pr{ ~D′′|X ′′ = k′′} =

z′′n′′k′′(
M ′′

k′′

)
and

Pr{ ~D′, ~D′′|X ′ = k′, X ′′ = k′′} = Pr{ ~D′|X ′ = k′}Pr{ ~D′′|X ′′ = k′′} =
z′n′k′z

′′
n′′k′′(

M ′

k′

)(
M ′′

k′′

)
where

z′j′k′ ,
m′1∑
g′1=0

· · ·
m′j∑
g′j=0

j′∏
i′=1

(
m′i
g′i

)
P (D′i|g′i)

and similar to z′′j′′k′′ . If we note that

Pr{X ′ = k′, X ′′ = k′′|Φ} = φk ·
(
M ′

k′

)(
M ′′

k′′

)(
M
k

)
and by definition

znk = zn′+n′′,k′+k′′ =
∑

{k′,k′′|k′+k′′=k}

z′n′k′z
′′
n′′k′′

we have

Pr{ ~D|Φ} =
∑
k

Pr{ ~D,X = k|Φ} =
∑
k′,k′′

Pr{ ~D′, ~D′′, X ′ = k′, X ′′ = k′′|Φ}

Thus we can derive the joint distribution:

Pr{X ′ = k′, X ′′ = k′′| ~D,Φ} =
φk′+k′′z

′
n′k′z

′′
n′′k′′

/(
M

k′+k′′

)∑
l φlznl

/(
M
l

) (4.8)
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If we let yjk = zjk/
(
Mj

k

)
as in Section 4.2.3,

Pr{X ′ = k′, X ′′ = k′′| ~D,Φ} =
φk′+k′′y

′
n′k′y

′′
n′′k′′∑

l φlynl
·
(
M ′

k′

)(
M ′′

k′′

)(
M ′+M ′′

k′+k′′

)
This derivation can be extended to arbitrary number of data sets.

4.2.7 Estimating 2-locus haplotype frequency

In this section, we only consider diploid samples (i.e. m1 = · · · = mn = 2). Let D = ( ~D, ~D′)

be the data at two loci, respectively; and Hi and H†i be the two underlying haplotypes for
individual i with Hi ∈ {0, 1, 2, 3} representing one of the four possible haplotypes at the 2

loci. We write H =
−−−−−→
(Hi, H

†
i ) as a haplotype configuration of the samples. Define

Ghk = bh/2c+ bk/2c

G′hk = (h mod 2) + (k mod 2)

which calculate the genotype of each locus, respectively.

Q(~φ|~φ(t)) =
∑
h

P (H = h|D, ~φ(t)) log Pr{D,H = h|~φ}

= C +
∑
h

∏
i

Pr{Hi = hi, H
†
i = h†i |D, ~φ

(t)}
∑
j

logP (hj , h
†
j |~φ)

= C +
∑
i

∑
hi

∑
h†i

Pr{Hi = hi, H
†
i = h†i |D, ~φ

(t)}
∑
j

log(φhiφh†i
)

Solving ∂φkQ− λ = 0 gives

φk =
1

2n

∑
i

∑
h

(
Pr{Hi = h,H†i = k|D, ~φ(t)}+ Pr{Hi = k,H†i = h|D, ~φ(t)}

)
=

φ
(t)
k

2n

n∑
i=1

∑
h φ

(t)
h

[
P (Di|Ghk)P (D′i|G′hk) + P (Di|Gkh)P (D′i|G′kh)

]∑
k′,h φ

(t)
k′ φ

(t)
h P (Di|Ghk′)P (D′i|G′hk′)

4.3 An alternative model

In Section 4.2, φk in Φ = {φk} is interpreted as the probability of seeing exactly k alleles
from M chromosomes. Under this model, the prior of a genotype configuration is

Pr{~G = ~g|Φ} = φsn(~g)

∏
i

(
mi
gi

)(
M

sn(~g)

)
and the posterior is

Pr{~G = ~g| ~D,Φ} =
φsn(~g)

Pr{ ~D|Φ}
·
∏
i

(
mi
gi

)
P (Di|gi)(
M

sn(~g)

)
Suppose we want to calculate the expectation of

∑
i fi(gi), we can∑

i

∑
~g

fi(gi) Pr{~G = ~g| ~D,Φ} =
1

Pr{ ~D|Φ}

∑
i

∑
k

φk(
M
k

) ∑
~g

δk,sn(~g)fi(gi)
∏
j

(
mj

gj

)
P (Dj |gj)
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Due to the presence of δk,sn(~g), we are unable to reduce the formula to a simpler form. Al-
though we can take a similar strategy in Section 4.2 to calculate

∑
k

∑
~g, which is O(n2),

another sum
∑
i will bring this calculation to O(n3). Even calculating the marginal prob-

ability Pr{Gi = gi| ~D,Φ} requires this time complexity. All the difficulty comes from that
individuals are correlated conditional on {X = k}.

An alternative model is to interpret the AFS as the discretized AFS of the population
rather than for the observed individuals. We define the population AFS discretized on M
chromosomes as Φ′ = {φ′k}. Under this model,

Pr{~G = ~g|Φ′} =
∑
k

φk
∏
i

P (gi|k/M)

Pr{~G = ~g, ~D|Φ′} =
∑
k

φk
∏
i

P (Di|gi)P (gi|k/M)

Pr{ ~D|Φ′} =
∑
~g

Pr{~G = ~g, ~D|Φ′} =

M∑
k=0

φ′k

n∏
i=1

mi∑
gi=0

P (Di|gi)P (gi|k/M)

and ∑
i

∑
~g

fi(gi) Pr{~G = ~g| ~D,Φ′} (4.9)

=
1

Pr{ ~D|Φ′}

∑
i

∑
~g

fi(gi)
∑
k

φ′k
∏
j

P (Dj |gj)P (gj |k/M)

=
1

Pr{ ~D|Φ′}

∑
k

φ′k
∑
i

fi(gi)P (Di|gi)P (gi|k/M)
∏
j 6=i

∑
gj

P (Dj |gj)P (gj |k/M)

=
1

Pr{ ~D|Φ′}

∑
k

φ′k

[∏
i

∑
gi

P (Di|gi)P (gi|k/M)

]
·

[∑
i

∑
gi
fi(gi)P (Di|gi)P (gi|k/M)∑
gi
P (Di|gi)P (gi|k/M)

]

The time complexity of this calculation is O(n2). Consider that if fi(gi) = gi, X =
∑
i fi(Gi).

We can easily calculate E(X| ~D,Φ′) with the formula above.

4.3.1 Posterior distribution of the allele count

Under the alternative model, we can also derive the posterior distribution of X, Pr{X =

k| ~D,Φ′} as follows.

Pr{X = k|Φ′} =

(
M

k

) M∑
l=0

φ′l

(
l

M

)k (
1− l

M

)M−k
Then

Pr{ ~D,X = k|Φ′} = znk

M∑
l=0

φ′l

(
l

M

)k (
1− l

M

)M−k
(4.10)

In fact, we also have an alternative way to derive this Pr{ ~D,X = k|Φ′}. Let φ′ be the
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true site allele frequency in the population. Assuming HWE, we have

Pr{X = k, ~D|φ′} =
∑
~g

δk,sn(~g) Pr{ ~D|~G = ~g}Pr{~G = ~g|φ′} (4.11)

=
∑
~g

δk,sn(~g)
∏
i

P (D|gi)
(
mi

gi

)
φ′gi(1− φ′)mi−gi

= φ′k(1− φ′)M−k
∑
~g

δk,sn(~g)
∏
i

(
mi

gi

)
P (Di|gi)

= φ′k(1− φ′)M−kznk

Summing over the AFS gives

Pr{ ~D,X = k|Φ′} =
∑
l

φ′l Pr{X = k, ~D|φ′ = l/M}

which is exactly Eq. (4.10). It is worth noting that E(X| ~D,Φ′) calculated by Eq. (4.11) is
identical to the one calculated by Eq. (4.9), which has been numerically confirmed.

In practical calculation, the alternative model has very similar performance to the method
in Section 4.2 in one iteration. However, in proving EM, we require Pr{X = k|Φ} = φk,
which does not stand any more in the alternative interpretation. Iterating Eq. (4.10) may
not monotonically increase the likelihood function. Even if this was also another different
EM procedure, we have not proved it yet. Yi et al. (2010) essentially calculates Eq. (4.11) for
φ′ estimated from data without summing over the AFS. Probably this method also delivers
similar results, but it is not theoretically sound and may not be iterated, either.

4.4 Likelihood of data given genotype

Given a site covered by k reads from an m-ploid individual, the sequencing data is:

D = (b1, . . . , bk) = (1, . . . , 1︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
k−l

)

where 1 stands for a reference allele and 0 otherwise. The j-th base is associated with error
rate εj , which is the larger error rate between sequencing and alignment errors. We have

P (D|0) =

l∏
j=1

εj

k∏
j=l+1

(1− εj) =

1−
k∑

j=l+1

εj + o(ε2)

 l∏
j=1

εj (4.12)

P (D|m) =

1−
l∑

j=1

εj + o(ε2)

 k∏
j=l+1

εj (4.13)
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For 0 < g < m:

P (D|g) =

1∑
a1=0

· · ·
1∑

ak=0

Pr{D|B1 = a1, . . . , Bk = ak}Pr{B1 = a1, . . . , Bk = ak|g}(4.14)

=
∑
~a

( g
m

)∑
j aj
(

1− g

m

)k−∑j aj ·
∏
j

pj(aj)

=
(

1− g

m

)k∏
j

1∑
a=0

pj(a)

(
g

m− g

)a

=
(

1− g

m

)k l∏
j=1

(
εj +

g

m− g
(1− εj)

) k∏
j=l+1

(
1− εj +

εjg

m− g

)

=
(

1− g

m

)k
(

g

m− g

)l
+

(
1− g

m− g

) l∑
j=1

εj −
k∑

j=l+1

εj

+ o(ε2)


In the bracket, the first term explains the deviation between l/k and g/m by imperfect
sampling, while the second term explains the deviation by sequencing errors. The second
term can be ignored when k is small but may play a major role when k is large. In particular,
for m = 2, P (D|1) = 2−k, independent of sequencing errors.

In case of dependent errors, we may replace:

ε1 < ε2 < · · · < εl

with
ε′j = εα

j−1

j

where parameter α ∈ [0, 1] addresses the error dependency.

4.5 Multi-sample SNP calling and genotyping

The probability of the site being polymorphic is Pr{X = 0| ~D,Φ}. For individual i, we may
estimate the genotype ĝi as:

ĝi = argmax
gi

Pr{Gi = gi|Di, φE} = argmax
gi

P (Di|gi)P (gi|φE)∑
hi
P (Di|hi)P (hi|φE)

where
φE = E(X| ~D,Φ)/M

This estimate of genotypes may not necessarily maximize the posterior probability P (~g| ~D),
but it should be good enough in practice. However, it should be noted that

∑
i ĝi is usually

a bad estimator of site allele frequency. The max-likelihood estimator by Eq. (4.7) is much
better.
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